Suppr超能文献

利用计算机模拟的吸收、分布、代谢、排泄和毒性概况指导筛选命中系列的选择。

Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.

作者信息

Sanders John M, Beshore Douglas C, Culberson J Christopher, Fells James I, Imbriglio Jason E, Gunaydin Hakan, Haidle Andrew M, Labroli Marc, Mattioni Brian E, Sciammetta Nunzio, Shipe William D, Sheridan Robert P, Suen Linda M, Verras Andreas, Walji Abbas, Joshi Elizabeth M, Bueters Tjerk

机构信息

Modeling & Informatics, ‡Discovery Chemistry, and §Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc. , Kenilworth, New Jersey 07065, United States.

出版信息

J Med Chem. 2017 Aug 24;60(16):6771-6780. doi: 10.1021/acs.jmedchem.6b01577. Epub 2017 May 5.

Abstract

High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.

摘要

高通量筛选(HTS)已使数百万种化合物得以进行生物活性评估,但在命中系列的优先级排序方面仍存在挑战。虽然生物学、吸收、分布、代谢、排泄和毒性(ADMET)、纯度和结构数据通常用于选择化学物质进行进一步跟进,但用于筛选命中物的历史ADMET数据的稀缺性限制了我们对早期命中化合物的理解。在此,我们描述了一个过程,该过程利用一系列内部定量构效关系(QSAR)模型为命中系列生成虚拟ADMET概况,以更全面地表征HTS化学物质。这些概况使团队能够快速评估命中系列是否具有理想的ADMET特性或可能需要大量优化的潜在问题。因此,这些虚拟数据可以指导ADMET实验,并深刻影响命中系列的进展。本文给出了几个前瞻性例子以证实这种方法的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验