Takemura Alison F, Corzett Christopher H, Hussain Fatima, Arevalo Philip, Datta Manoshi, Yu Xiaoqian, Le Roux Frederique, Polz Martin F
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Environ Microbiol. 2017 Jun;19(6):2422-2433. doi: 10.1111/1462-2920.13765. Epub 2017 May 26.
Heterotrophic bacteria exploit diverse microhabitats in the ocean, from particles to transient gradients. Yet the degree to which genes and pathways can contribute to an organism's fitness on such complex and variable natural resource landscapes remains poorly understood. Here, we determine the gene-by-gene fitness of a generalist saprophytic marine bacterium (Vibrio sp. F13 9CS106) on complex resources derived from its natural habitats - copepods (Apocyclops royi) and brown algae (Fucus vesiculosus) - and as reference substrates, glucose and the polysaccharide alginate, derived from brown algal cell walls. We find that resource complexity strongly buffers fitness costs of mutations, and that anabolic rather than catabolic pathways are more stringently required, likely due to functional redundancy in the latter. Moreover, while carbohydrate-rich algae requires several synthesis pathways, protein-rich Apocyclops does not, suggesting this ancestral habitat for Vibrios is a replete medium with metabolically redundant substrates. We also identify a candidate fitness trade-off for algal colonization: deletion of mshA increases mutant fitness. Our results demonstrate that gene fitness depends on habitat composition, and suggest that this generalist uses distinct resources in different natural habitats. The results further indicate that substrate replete conditions may lead to relatively relaxed selection on catabolic genes.
异养细菌利用海洋中的各种微生境,从颗粒物质到瞬变梯度。然而,基因和代谢途径在如此复杂多变的自然资源环境中对生物体适应性的贡献程度仍知之甚少。在这里,我们确定了一种广食性腐生海洋细菌(弧菌属F13 9CS106)在源自其自然栖息地的复杂资源——桡足类动物(罗氏无节幼体)和褐藻(墨角藻)——以及作为参考底物的葡萄糖和源自褐藻细胞壁的多糖藻酸盐上逐个基因的适应性。我们发现,资源复杂性强烈缓冲了突变的适应性成本,并且合成代谢途径而非分解代谢途径的需求更为严格,这可能是由于后者存在功能冗余。此外,虽然富含碳水化合物的藻类需要多种合成途径,但富含蛋白质的罗氏无节幼体则不需要,这表明弧菌的这个原始栖息地是一种具有代谢冗余底物的丰富培养基。我们还确定了一个藻类定殖的候选适应性权衡:mshA的缺失增加了突变体的适应性。我们的结果表明基因适应性取决于栖息地组成,并表明这种广食性细菌在不同的自然栖息地利用不同的资源。结果还表明,底物充足的条件可能导致对分解代谢基因的选择相对宽松。