Reddy Muthyala Nagarjuna, Zhang Shaofei, Kim Han-Je, Mass Olga, Taniguchi Masahiko, Lindsey Jonathan S
Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
Department of Science Education, Gongju National University of Education, Gongju 314-701, Korea.
Molecules. 2017 Apr 14;22(4):634. doi: 10.3390/molecules22040634.
Synthetic bacteriochlorins-analogues of bacteriochlorophylls, Nature's near-infrared absorbers-are attractive for diverse photochemical studies. -Arylbacteriochlorins have been prepared by the self-condensation of a dihydrodipyrrin-carbinol or dihydrodipyrrin-acetal following an Eastern-Western (E-W) or Northern-Southern (N-S) joining process. The bacteriochlorins bear a gem-dimethyl group in each pyrroline ring to ensure stability toward oxidation. The two routes differ in the location of the gem-dimethyl group at the respective 3- or 2-position in the dihydrodipyrrin, and the method of synthesis of the dihydrodipyrrin. Treatment of a known 3,3-dimethyldihydrodipyrrin-1-carboxaldehyde with an aryl Grignard reagent afforded the dihydrodipyrrin-1-(aryl)carbinol, and upon subsequent acetylation, the corresponding dihydrodipyrrin-1-methyl acetate (dihydrodipyrrin-acetate). Self-condensation of the dihydrodipyrrin-acetate gave a -diarylbacteriochlorin (E-W route). A 2,2-dimethyl-5-aryldihydrodipyrrin-1-(aryl)carbinol underwent self-condensation to give a -A₂B₂-type -tetraarylbacteriochlorin (N-S route). In each case, the aromatization process entails a 2e/2H⁺ (aerobic) dehydrogenative oxidation following the dihydrodipyrrin self-condensation. Comparison of a tetrahydrodipyrrin-acetal (0%) versus a dihydrodipyrrin-acetal (41%) in bacteriochlorin formation and results with various 1-substituted dihydrodipyrrins revealed the importance of resonance stabilization of the reactive hydrodipyrrin intermediate. Altogether 10 new dihydrodipyrrins and five new bacteriochlorins have been prepared. The bacteriochlorins exhibit characteristic bacteriochlorophyll-like absorption spectra, including a Q band in the region 726-743 nm.
合成细菌叶绿素——细菌叶绿素的类似物,自然界的近红外吸收剂——对各种光化学研究具有吸引力。芳基细菌叶绿素是通过二氢二吡咯甲醇或二氢二吡咯缩醛按照东西方(E-W)或南北(N-S)连接过程进行自缩合制备的。细菌叶绿素在每个吡咯啉环中都带有偕二甲基以确保对氧化的稳定性。这两条路线在二氢二吡咯中偕二甲基位于各自的3-或2-位的位置以及二氢二吡咯的合成方法上有所不同。用芳基格氏试剂处理已知的3,3-二甲基二氢二吡咯-1-甲醛得到二氢二吡咯-1-(芳基)甲醇,随后乙酰化得到相应的二氢二吡咯-1-甲基乙酸酯(二氢二吡咯乙酸酯)。二氢二吡咯乙酸酯的自缩合得到一种二芳基细菌叶绿素(E-W路线)。一种2,2-二甲基-5-芳基二氢二吡咯-1-(芳基)甲醇进行自缩合得到一种A₂B₂型四芳基细菌叶绿素(N-S路线)。在每种情况下,芳构化过程在二氢二吡咯自缩合之后需要进行2e/2H⁺(有氧)脱氢氧化。比较细菌叶绿素形成过程中四氢二吡咯缩醛(0%)与二氢二吡咯缩醛(41%)以及各种1-取代二氢二吡咯的结果揭示了反应性二氢二吡咯中间体共振稳定的重要性。总共制备了10种新的二氢二吡咯和5种新的细菌叶绿素。这些细菌叶绿素表现出特征性的类细菌叶绿素吸收光谱,包括在726 - 743 nm区域的Q带。