Choi Hyukdoo, Kim Euntai
School of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea.
LG Electronics, Seoul 08592, Korea.
Sensors (Basel). 2017 Apr 16;17(4):876. doi: 10.3390/s17040876.
This study questions why existing local shape descriptors have high dimensionalities (up to hundreds) despite simplicity of local shapes. We derived an answer from a historical context and provided an alternative solution by proposing a new compact descriptor. Although existing descriptors can express complicated shapes and depth sensors have been improved, complex shapes are rarely observed in an ordinary environment and a depth sensor only captures a single side of a surface with noise. Therefore, we designed a new descriptor based on principal curvatures, which is compact but practically useful. For verification, the CoRBS dataset, the RGB-D Scenes dataset and the RGB-D Object dataset were used to compare the proposed descriptor with existing descriptors in terms of shape, instance, and category recognition rate. The proposed descriptor showed a comparable performance with existing descriptors despite its low dimensionality of 4.
本研究质疑为何尽管局部形状简单,但现有的局部形状描述符却具有高维度(高达数百维)。我们从历史背景中找到了答案,并通过提出一种新的紧凑描述符提供了一种替代解决方案。尽管现有描述符可以表达复杂形状且深度传感器已得到改进,但在普通环境中很少观察到复杂形状,并且深度传感器仅捕获带有噪声的表面的一侧。因此,我们基于主曲率设计了一种新的描述符,它紧凑但实用。为了进行验证,使用CoRBS数据集、RGB-D场景数据集和RGB-D对象数据集,在形状、实例和类别识别率方面将所提出的描述符与现有描述符进行比较。尽管所提出的描述符维度低至4,但仍表现出与现有描述符相当的性能。