Suppr超能文献

用于纵向数据和事件发生时间数据的联合弯曲电缆Tobit模型。

Joint bent-cable Tobit models for longitudinal and time-to-event data.

作者信息

Dagne Getachew A

机构信息

a Department of Epidemiology & Biostatistics , College of Public Health, University of South Florida , Tampa , Florida , USA.

出版信息

J Biopharm Stat. 2018;28(3):385-401. doi: 10.1080/10543406.2017.1321006. Epub 2017 May 8.

Abstract

In this article, we show how to estimate a transition period for the evolvement of drug resistance to antiretroviral (ARV) drug or other related treatments in the framework of developing a Bayesian method for jointly analyzing time-to-event and longitudinal data. For HIV/AIDS longitudinal data, developmental trajectories of viral loads tend to show a gradual change from a declining trend after initiation of treatment to an increasing trend without an abrupt change. Such characteristics of trajectories are also associated with a time-to-event process. To assess these clinically important features, we develop a joint bent-cable Tobit model for the time-to-event and left-censored response variable with skewness and phasic developments. Random effects are used to determine the stochastic dependence between the time-to-event process and response process. The proposed method is illustrated using real data from an AIDS clinical study.

摘要

在本文中,我们展示了如何在开发一种用于联合分析事件发生时间和纵向数据的贝叶斯方法的框架内,估计对抗逆转录病毒(ARV)药物或其他相关治疗产生耐药性演变的过渡期。对于艾滋病毒/艾滋病纵向数据,病毒载量的发展轨迹往往呈现出从治疗开始后的下降趋势逐渐转变为上升趋势,且无突然变化。轨迹的这些特征也与事件发生时间过程相关。为了评估这些临床上重要的特征,我们针对具有偏度和阶段性发展的事件发生时间和左删失响应变量开发了一种联合弯曲线托比特模型。随机效应用于确定事件发生时间过程和响应过程之间的随机依赖性。使用来自一项艾滋病临床研究的真实数据对所提出的方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验