Suppr超能文献

AnkPlex:用于优化近天然锚蛋白-蛋白质对接的算法结构。

AnkPlex: algorithmic structure for refinement of near-native ankyrin-protein docking.

作者信息

Wisitponchai Tanchanok, Shoombuatong Watshara, Lee Vannajan Sanghiran, Kitidee Kuntida, Tayapiwatana Chatchai

机构信息

Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.

Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.

出版信息

BMC Bioinformatics. 2017 Apr 19;18(1):220. doi: 10.1186/s12859-017-1628-6.

Abstract

BACKGROUND

Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet.

RESULTS

In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses.

CONCLUSION

The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .

摘要

背景

蛋白质-蛋白质相互作用的计算分析为在不改变基本构象的情况下提高结合亲和力提供了关键信息。使用了几种对接程序来预测蛋白质-蛋白质复合物在排名前十的近天然构象。由于存在几类识别蛋白,目前尚无区分近天然构象的通用标准。目前,尚未报道识别锚蛋白-蛋白质复合物(APK)近天然构象的明确标准。

结果

在本研究中,我们建立了一个名为“AnkPlex”的集成计算模型,用于区分APK的近天然对接构象。使用可靠的对接工具ZDOCK从七个X射线APK生成了一个APK数据集,该数据集由3个内部结构域组成。该数据集分别由669个近天然构象和44334个非近天然构象组成,并用于生成11个信息特征。随后,AnkPlex使用决策树算法和逻辑回归的组合生成了一个重新评分排名。与仅获得6个X射线复合物的ZDOCK相比,AnkPlex在9个X射线复合物的排名前十中实现了更高的效率,其中有≥1个近天然复合物。此外,特征分析表明,范德华力特征是潜在的锚蛋白-蛋白质对接构象中占主导地位的近天然构象。

结论

AnkPlex模型在预测近天然对接构象方面取得了成功,并发现了有助于进一步加深我们对锚蛋白-蛋白质复合物理解的信息特征。我们的计算研究可能有助于预测结合蛋白和所需靶标的近天然构象,特别是对于锚蛋白-蛋白质复合物。AnkPlex网络服务器可在http://ankplex.ams.cmu.ac.th免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63f1/5395911/4b86e522132a/12859_2017_1628_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验