Suppr超能文献

mTORC1促进T-bet磷酸化以调节Th1细胞分化。

mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation.

作者信息

Chornoguz Olesya, Hagan Robert S, Haile Azeb, Arwood Matthew L, Gamper Christopher J, Banerjee Arnob, Powell Jonathan D

机构信息

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287.

Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287.

出版信息

J Immunol. 2017 May 15;198(10):3939-3948. doi: 10.4049/jimmunol.1601078. Epub 2017 Apr 19.

Abstract

CD4 T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4 T cells, as well as murine CD4 T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4 T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.

摘要

缺乏mTORC1激活因子Rheb的CD4 T细胞在Th1极化条件下无法分泌IFN-γ。我们推测这种表型是由于在mTORC1下游的蛋白质磷酸化水平上,经典Th1转录因子T-bet的调控存在缺陷所致。为了验证这一假设,我们采用了靶向质谱蛋白质组学分析——多反应监测质谱法。我们使用这种方法来检测和定量源自T-bet的预测磷酸肽。通过分析活化的小鼠野生型和Rheb缺陷型CD4 T细胞,以及在mTORC1的药理学抑制剂雷帕霉素存在下活化的小鼠CD4 T细胞,我们能够鉴定出六个T-bet磷酸化位点。其中五个是新发现的,并且在Rheb缺陷型CD4 T细胞和用雷帕霉素处理的T细胞中,有四个位点始终处于去磷酸化状态,这表明mTORC1信号传导控制着它们的磷酸化。对六个磷酸化位点中的每一个进行丙氨酸诱变,测试其损害IFN-γ表达的能力。单个磷酸化位点突变体仍能支持IFN-γ表达的诱导;然而,三个mTORC1依赖性位点的同时突变会导致IFN-γ表达显著降低。三重突变体T-bet活性的降低与其无法将染色质重塑复合物募集到基因启动子有关。这些结果建立了一种新的机制,通过该机制mTORC1通过控制T-bet磷酸化来调节Th1分化。

相似文献

1
mTORC1 Promotes T-bet Phosphorylation To Regulate Th1 Differentiation.
J Immunol. 2017 May 15;198(10):3939-3948. doi: 10.4049/jimmunol.1601078. Epub 2017 Apr 19.
2
Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4 T cells.
Microbiol Immunol. 2018 May;62(5):348-356. doi: 10.1111/1348-0421.12586.
3
Lysine 313 of T-box is crucial for modulation of protein stability, DNA binding, and threonine phosphorylation of T-bet.
J Immunol. 2013 Jun 1;190(11):5764-70. doi: 10.4049/jimmunol.1203403. Epub 2013 Apr 24.
4
IFN-alpha is not sufficient to drive Th1 development due to lack of stable T-bet expression.
J Immunol. 2007 Sep 15;179(6):3792-803. doi: 10.4049/jimmunol.179.6.3792.
5
Exhausted CD4 T Cells during Malaria Exhibit Reduced mTORc1 Activity Correlated with Loss of T-bet Expression.
J Immunol. 2020 Sep 15;205(6):1608-1619. doi: 10.4049/jimmunol.2000450. Epub 2020 Aug 17.
6
CC-4047 promotes Th1 cell differentiation and reprograms polarized human Th2 cells by enhancing transcription factor T-bet.
Clin Immunol. 2008 Sep;128(3):392-9. doi: 10.1016/j.clim.2008.04.009. Epub 2008 Jun 20.
8
IL-12 up-regulates T-bet independently of IFN-gamma in human CD4+ T cells.
Eur J Immunol. 2005 Nov;35(11):3297-306. doi: 10.1002/eji.200526101.
10
Immunology. T-bet or not T-bet.
Science. 2003 Nov 7;302(5647):993-4. doi: 10.1126/science.1092040.

引用本文的文献

1
Breast feeding, obesity, and asthma association: clinical and molecular views.
Clin Mol Allergy. 2023 Oct 3;21(1):8. doi: 10.1186/s12948-023-00189-0.
2
Regulation of CD8 T memory and exhaustion by the mTOR signals.
Cell Mol Immunol. 2023 Sep;20(9):1023-1039. doi: 10.1038/s41423-023-01064-3. Epub 2023 Aug 15.
3
Glutaminolysis and peripheral CD4 T cell differentiation: from mechanism to intervention strategy.
Front Immunol. 2023 Jul 21;14:1221530. doi: 10.3389/fimmu.2023.1221530. eCollection 2023.
4
The African-centric P47S Variant of Confers Immune Dysregulation and Impaired Response to Immune Checkpoint Inhibition.
Cancer Res Commun. 2023 Jul 11;3(7):1200-1211. doi: 10.1158/2767-9764.CRC-23-0149. eCollection 2023 Jul.
5
Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism.
Immunohorizons. 2023 Jun 1;7(6):493-507. doi: 10.4049/immunohorizons.2300016.
6
Checkpoint TIPE2 Limits the Helper Functions of NK Cells in Supporting Antitumor CD8 T Cells.
Adv Sci (Weinh). 2023 Apr;10(12):e2207499. doi: 10.1002/advs.202207499. Epub 2023 Feb 19.
7
Control of CD4 T Cell Differentiation and Function by PI3K Isoforms.
Curr Top Microbiol Immunol. 2022;436:197-216. doi: 10.1007/978-3-031-06566-8_8.
8
Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back.
Front Immunol. 2022 Jun 30;13:932893. doi: 10.3389/fimmu.2022.932893. eCollection 2022.
9
Fatty Acid Metabolism and T Cells in Multiple Sclerosis.
Front Immunol. 2022 May 4;13:869197. doi: 10.3389/fimmu.2022.869197. eCollection 2022.
10
mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases.
Front Immunol. 2022 Feb 10;13:827461. doi: 10.3389/fimmu.2022.827461. eCollection 2022.

本文引用的文献

1
Inefficient megakaryopoiesis in mouse hematopoietic stem-progenitor cells lacking T-bet.
Exp Hematol. 2016 Mar;44(3):194-206.e17. doi: 10.1016/j.exphem.2015.11.003. Epub 2015 Nov 19.
2
Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.
PLoS One. 2015 Apr 7;10(4):e0121710. doi: 10.1371/journal.pone.0121710. eCollection 2015.
3
Stable reconstitution of IKK-deficient mouse embryonic fibroblasts.
Methods Mol Biol. 2015;1280:181-95. doi: 10.1007/978-1-4939-2422-6_10.
4
Role of phosphoproteomics in the development of personalized cancer therapies.
Proteomics Clin Appl. 2015 Apr;9(3-4):383-95. doi: 10.1002/prca.201400104. Epub 2015 Feb 27.
5
Bcl-6 directly represses the gene program of the glycolysis pathway.
Nat Immunol. 2014 Oct;15(10):957-64. doi: 10.1038/ni.2985. Epub 2014 Sep 7.
6
The role of protein modifications of T-bet in cytokine production and differentiation of T helper cells.
J Immunol Res. 2014;2014:589672. doi: 10.1155/2014/589672. Epub 2014 May 13.
7
Eomesodermin is required for antitumor immunity mediated by 4-1BB-agonist immunotherapy.
Oncoimmunology. 2014 Jan 1;3(1):e27680. doi: 10.4161/onci.27680. Epub 2014 Feb 27.
8
A targeted proteomics approach for profiling murine cytochrome P450 expression.
J Pharmacol Exp Ther. 2014 May;349(2):221-8. doi: 10.1124/jpet.113.212456. Epub 2014 Mar 4.
9
T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming.
Immunity. 2013 Dec 12;39(6):1043-56. doi: 10.1016/j.immuni.2013.09.015. Epub 2013 Dec 5.
10
mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function.
Nature. 2013 Jul 25;499(7459):485-90. doi: 10.1038/nature12297. Epub 2013 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验