Cutillas Pedro R
Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
Proteomics Clin Appl. 2015 Apr;9(3-4):383-95. doi: 10.1002/prca.201400104. Epub 2015 Feb 27.
Cell signalling pathways driven by protein and lipid kinases contribute to the onset and progression of virtually all cancer types. Consequently, several inhibitors against these enzymes have clinical utility for the treatment of different forms of cancer. A problem that hampers further development is that not all patients respond equally well to kinase inhibitors and a significant proportion of those that initially respond eventually develop resistance. This review considers how an integrative analysis of kinase signalling may be used to address this issue. Advances in the biophysics of mass spectrometry, in biochemical procedures for phosphopeptide enrichment, and in computational approaches for label-free quantification have contributed to the development of phosphoproteomics workflows compatible with the analysis of clinical material. These developments, together with new bioinformatics tools to derive information on signalling circuitry from phosphoproteomics data, allow investigating kinase networks with unprecedented depth. Phosphoproteomics technology is starting to be used in translational research and, with further developments, such methods may also be able to measure the circuitry of cancer signalling networks in routine clinical assays. This review reflects on how this information could be used to accurately predict the best kinase inhibitor for each individual cancer patient.
由蛋白质激酶和脂质激酶驱动的细胞信号通路几乎在所有癌症类型的发生和发展过程中都发挥作用。因此,几种针对这些酶的抑制剂在治疗不同类型癌症方面具有临床应用价值。阻碍进一步发展的一个问题是,并非所有患者对激酶抑制剂的反应都同样良好,而且很大一部分最初有反应的患者最终会产生耐药性。本综述探讨了如何通过对激酶信号进行综合分析来解决这一问题。质谱生物物理学、磷酸肽富集生化方法以及无标记定量计算方法的进展,推动了与临床材料分析兼容的磷酸化蛋白质组学工作流程的发展。这些进展,再加上从磷酸化蛋白质组学数据中获取信号通路信息的新生物信息学工具,使得能够以前所未有的深度研究激酶网络。磷酸化蛋白质组学技术已开始用于转化研究,随着进一步发展,此类方法或许还能够在常规临床检测中测量癌症信号网络的通路。本综述思考了如何利用这些信息为每位癌症患者准确预测最佳的激酶抑制剂。