Callens Céline, Coelho Nelson C, Miller Aaron W, Sananes Maria Rosa Domingo, Dunham Maitreya J, Denoual Matthieu, Coudreuse Damien
SyntheCell Team, Institute of Genetics and Development of Rennes, CNRS UMR 6290, Rennes, France.
Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
Yeast. 2017 Aug;34(8):343-355. doi: 10.1002/yea.3237. Epub 2017 Jun 6.
Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin-encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo-pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long-term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
维持酵母细胞的长期培养对于从代谢研究到实验室进化分析等广泛的研究至关重要。然而,分批培养的反复稀释会导致培养基成分的变化,从而影响细胞生理学。在酿酒酵母中,强大的小型化恒化器设置或微型恒化器阵列已被证明可以对多个独立培养物进行连续稀释。在这里,我们着手对这些阵列进行改造,以用于形态和生理上不同的酵母——裂殖酵母粟酒裂殖酵母的连续培养,目标是随着时间的推移保持恒定的种群密度。首先,我们证明了原始的微型恒化器与裂殖酵母生长几代以上不兼容,这促使我们对系统设计的不同方面进行修改。接下来,我们确定了在这些条件下维持无偏差营养生长的关键参数。这需要删除编码絮凝蛋白gsf2的基因,同时向培养基中添加半乳糖并降低培养温度。重要的是,我们通过开发一个压电泵模块来独立调节每个培养物的稀释率,提高了微型恒化器的灵活性。这使得在同一次试验中轻松培养具有不同世代时间的菌株成为可能。因此,我们的系统允许维持多个处于指数生长阶段的裂殖酵母培养物,随着时间的推移调整每个培养物的稀释度,以保持数百代的恒定种群密度。这些多重培养系统为使用这种模式生物进行一系列新的长期实验打开了大门。© 2017作者。《酵母》由约翰·威利父子有限公司出版。