Umenhoffer Kinga, Draskovits Gábor, Nyerges Ákos, Karcagi Ildikó, Bogos Balázs, Tímár Edit, Csörgő Bálint, Herczeg Róbert, Nagy István, Fehér Tamás, Pál Csaba, Pósfai György
Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , 6726 Szeged, Hungary.
SeqOmics Biotechnology Ltd , 6782 Mórahalom, Hungary.
ACS Synth Biol. 2017 Aug 18;6(8):1471-1483. doi: 10.1021/acssynbio.6b00378. Epub 2017 Apr 26.
The ideal bacterial chassis provides a simplified, stable and predictable host environment for synthetic biological circuits. Mutability and evolution can, however, compromise stability, leading to deterioration of artificial genetic constructs. By eliminating certain sources of instability, these undesired genetic changes can be mitigated. Specifically, deletion of prophages and insertion sequences, nonessential constituents of bacterial genomes, has been shown to be beneficial in cellular and genetic stabilization. Here, we sought to establish a rapid methodology to improve the stability of microbial hosts. The novel workflow involves genome shuffling between a mobile genetic element-free strain and the target cell, and subsequent rounds of CRISPR/Cas-assisted MAGE on multiplex targets. The power and speed of the procedure was demonstrated on E. coli BL21(DE3), a host routinely used for plasmid-based heterologous protein expression. All 9 prophages and 50 insertion elements were efficiently deleted or inactivated. Together with additional targeted manipulations (e.g., inactivation of error-prone DNA-polymerases), the changes resulted in an improved bacterial host with a hybrid (harboring segments of K-12 DNA), 9%-downsized and clean genome. The combined capacity of phage-mediated generalized transduction and CRISPR/Cas-selected MAGE offers a way for rapid, large scale editing of bacterial genomes.
理想的细菌底盘为合成生物电路提供了一个简化、稳定且可预测的宿主环境。然而,可变性和进化可能会损害稳定性,导致人工基因构建体的退化。通过消除某些不稳定来源,可以减轻这些不期望的基因变化。具体而言,已证明删除原噬菌体和插入序列(细菌基因组的非必需成分)对细胞和基因稳定有益。在此,我们试图建立一种快速方法来提高微生物宿主的稳定性。这种新的工作流程涉及在无移动遗传元件的菌株和靶细胞之间进行基因组改组,以及随后在多个靶标上进行一轮又一轮的CRISPR/Cas辅助的MAGE。该方法的效能和速度在大肠杆菌BL21(DE3)上得到了验证,这是一种常用于基于质粒的异源蛋白表达的宿主。所有9个原噬菌体和50个插入元件都被有效地删除或失活。连同其他靶向操作(例如,易错DNA聚合酶的失活),这些变化产生了一种改良的细菌宿主,其基因组为杂交型(含有K-12 DNA片段),大小缩小了9%且没有冗余。噬菌体介导的广义转导和CRISPR/Cas选择的MAGE的联合能力为细菌基因组的快速大规模编辑提供了一种方法。