Jordan Tobias, Pinho Alves Oto Costa, De Wilde Philippe, Buarque de Lima-Neto Fernando
School of Computing, University of Kent, Canterbury, Kent, United Kingdom.
Computational Intelligence Research Group, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
PLoS One. 2017 Apr 20;12(4):e0176094. doi: 10.1371/journal.pone.0176094. eCollection 2017.
Diffusion processes in social networks often cause the emergence of global phenomena from individual behavior within a society. The study of those global phenomena and the simulation of those diffusion processes frequently require a good model of the global network. However, survey data and data from online sources are often restricted to single social groups or features, such as age groups, single schools, companies, or interest groups. Hence, a modeling approach is required that extrapolates the locally restricted data to a global network model. We tackle this Missing Data Problem using Link-Prediction techniques from social network research, network generation techniques from the area of Social Simulation, as well as a combination of both. We found that techniques employing less information may be more adequate to solve this problem, especially when data granularity is an issue. We validated the network models created with our techniques on a number of real-world networks, investigating degree distributions as well as the likelihood of links given the geographical distance between two nodes.
社交网络中的扩散过程常常会使社会中的个体行为引发全球现象。对这些全球现象的研究以及对那些扩散过程的模拟通常需要一个良好的全球网络模型。然而,调查数据和来自在线来源的数据往往局限于单一社会群体或特征,例如年龄组、单一学校、公司或兴趣群体。因此,需要一种建模方法将局部受限的数据外推到全球网络模型。我们使用来自社交网络研究的链接预测技术、社会模拟领域的网络生成技术以及两者的结合来解决这个缺失数据问题。我们发现,采用较少信息的技术可能更适合解决这个问题,尤其是在数据粒度成为问题时。我们在一些真实世界网络上验证了用我们的技术创建的网络模型,研究了度分布以及给定两个节点之间地理距离时链接的可能性。