Suppr超能文献

复杂网络中的链接预测:互信息视角

Link prediction in complex networks: a mutual information perspective.

作者信息

Tan Fei, Xia Yongxiang, Zhu Boyao

机构信息

Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

PLoS One. 2014 Sep 10;9(9):e107056. doi: 10.1371/journal.pone.0107056. eCollection 2014.

Abstract

Topological properties of networks are widely applied to study the link-prediction problem recently. Common Neighbors, for example, is a natural yet efficient framework. Many variants of Common Neighbors have been thus proposed to further boost the discriminative resolution of candidate links. In this paper, we reexamine the role of network topology in predicting missing links from the perspective of information theory, and present a practical approach based on the mutual information of network structures. It not only can improve the prediction accuracy substantially, but also experiences reasonable computing complexity.

摘要

网络的拓扑特性最近被广泛应用于研究链路预测问题。例如,共同邻居是一个自然而有效的框架。因此,人们提出了许多共同邻居的变体,以进一步提高候选链路的判别分辨率。在本文中,我们从信息论的角度重新审视网络拓扑在预测缺失链路中的作用,并提出一种基于网络结构互信息的实用方法。它不仅可以大幅提高预测准确率,而且计算复杂度合理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/381d/4160214/024d76df8b58/pone.0107056.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验