Lebon G S Bruno, Tzanakis I, Djambazov G, Pericleous K, Eskin D G
Computational Science and Engineering Group (CSEG), University of Greenwich, 30 Park Row, London SE10 9ET, United Kingdom.
Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Faculty of Technology, Design and Environment, Oxford Brookes University, Wheatley Campus, Wheatley, OX33 1HX, United Kingdom.
Ultrason Sonochem. 2017 Jul;37:660-668. doi: 10.1016/j.ultsonch.2017.02.031. Epub 2017 Feb 24.
To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data.
为了解决用超声波处理大量液态金属时遇到的困难,本文提出了一项关于液态铝中声空化的基础研究,并以一个经过实验验证的数值模型来表示。为了更好地理解空化过程,针对浸没式变幅杆产生的声波所测得的参考水压,对一个非线性声学模型进行了验证。采用高阶方法在空间和时间上离散波动方程。这些离散方程通过使用两个不同的时间尺度与瑞利 - 普莱斯方程耦合,以耦合气泡尺度和流动尺度,从而得到一种稳定、快速且精度合理的方法来预测空化液体中的声压。然后将该方法应用于液态铝的处理情况,预测结果表明最强的空化活动集中在振动变幅杆下方,并估计了超声焊极下方的声衰减,与实验数据在定性上具有合理的一致性。