Suppr超能文献

癌症中的主要转录调控因子:通过反向工程方法的发现和后续验证。

Master Transcriptional Regulators in Cancer: Discovery via Reverse Engineering Approaches and Subsequent Validation.

机构信息

Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Research, UCD Conway Institute, University College Dublin, Dublin, Ireland.

OncoMark Limited, NovaUCD, Belfield Innovation Park, Belfield, Dublin, Ireland.

出版信息

Cancer Res. 2017 May 1;77(9):2186-2190. doi: 10.1158/0008-5472.CAN-16-1813. Epub 2017 Apr 20.

Abstract

Reverse engineering of transcriptional networks using gene expression data enables identification of genes that underpin the development and progression of different cancers. Methods to this end have been available for over a decade and, with a critical mass of transcriptomic data in the oncology arena having been reached, they are ever more applicable. Extensive and complex networks can be distilled into a small set of key master transcriptional regulators (MTR), genes that are very highly connected and have been shown to be involved in processes of known importance in disease. Interpreting and validating the results of standardized bioinformatic methods is of crucial importance in determining the inherent value of MTRs. In this review, we briefly describe how MTRs are identified and focus on providing an overview of how MTRs can and have been validated for use in clinical decision making in malignant diseases, along with serving as tractable therapeutic targets. .

摘要

使用基因表达数据进行转录网络的反向工程可以识别出支持不同癌症发生和发展的基因。十多年来,已经有了实现这一目标的方法,并且随着肿瘤学领域转录组数据达到了关键的规模,这些方法的应用也越来越广泛。广泛而复杂的网络可以简化为一小部分关键的主转录调控因子(MTR),这些基因具有非常高的连接性,并且已经被证明与疾病中已知的重要过程有关。解释和验证标准化生物信息学方法的结果对于确定 MTR 的内在价值至关重要。在这篇综述中,我们简要描述了如何识别 MTR,并重点介绍了如何以及已经验证了 MTR 在恶性疾病的临床决策中的应用,以及作为可行的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验