Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
Cell Syst. 2024 Sep 18;15(9):824-837.e6. doi: 10.1016/j.cels.2024.08.004. Epub 2024 Sep 4.
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
大多数癌症类型缺乏靶向治疗选择,而当一线靶向治疗可用时,治疗耐药性是一个巨大的挑战。最近的技术进步使得能够以高通量的方式在患者组织上使用转座酶可及染色质的测定 (ATAC-seq) 和 RNA 测序 (RNA-seq)。在这里,我们提出了一种计算方法,利用这些数据集根据肿瘤谱系识别药物靶点。我们使用经过三维基因组数据训练的机器学习方法为 22 种癌症类型的 371 名患者构建了基因调控网络,用于增强子到启动子接触。接下来,我们通过直接靶向 TFs 或它们相互作用的蛋白质,确定了这些网络中的关键转录因子 (TFs),这些 TFs 可用于寻找治疗弱点。我们验证了为神经内分泌、肝脏和肾脏癌症确定的四个候选药物,这些癌症目前的治疗选择预后不良。