Suppr超能文献

利用染色质可及性和转录组数据发现癌症治疗靶点。

Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data.

机构信息

Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA.

Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.

出版信息

Cell Syst. 2024 Sep 18;15(9):824-837.e6. doi: 10.1016/j.cels.2024.08.004. Epub 2024 Sep 4.

Abstract

Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.

摘要

大多数癌症类型缺乏靶向治疗选择,而当一线靶向治疗可用时,治疗耐药性是一个巨大的挑战。最近的技术进步使得能够以高通量的方式在患者组织上使用转座酶可及染色质的测定 (ATAC-seq) 和 RNA 测序 (RNA-seq)。在这里,我们提出了一种计算方法,利用这些数据集根据肿瘤谱系识别药物靶点。我们使用经过三维基因组数据训练的机器学习方法为 22 种癌症类型的 371 名患者构建了基因调控网络,用于增强子到启动子接触。接下来,我们通过直接靶向 TFs 或它们相互作用的蛋白质,确定了这些网络中的关键转录因子 (TFs),这些 TFs 可用于寻找治疗弱点。我们验证了为神经内分泌、肝脏和肾脏癌症确定的四个候选药物,这些癌症目前的治疗选择预后不良。

相似文献

8
Prenet: Predictive network from ATAC-SEQ data.Prenet:基于 ATAC-SEQ 数据的预测网络。
J Bioinform Comput Biol. 2020 Feb;18(1):2040003. doi: 10.1142/S021972002040003X.

本文引用的文献

4
Predicting master transcription factors from pan-cancer expression data.从泛癌表达数据中预测主转录因子。
Sci Adv. 2021 Nov 26;7(48):eabf6123. doi: 10.1126/sciadv.abf6123. Epub 2021 Nov 24.
7
A modular master regulator landscape controls cancer transcriptional identity.模块化主调控器景观控制癌症转录特性。
Cell. 2021 Jan 21;184(2):334-351.e20. doi: 10.1016/j.cell.2020.11.045. Epub 2021 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验