Coduri M, Scavini M, Pani M, Carnasciali M M, Klein H, Artini C
ESRF - The European Synchrotron, 71, Avenue des Martyrs, 38000 Grenoble, France.
Phys Chem Chem Phys. 2017 May 10;19(18):11612-11630. doi: 10.1039/c6cp08173h.
The evolution of the defect structure and microstructure of heavily Gd-doped ceria (CeREO, 0.313 ≤ μ ≤ 0.438) for different synthetic pathways is investigated here to explore the way defects interact with each other in a composition range known to effectively hamper the application of the material as an electrolyte. Synchrotron radiation powder diffraction is exploited by combining conventional Rietveld analysis with the Pair Distribution Function to get a multiscale picture of defect structures, and it is combined with Raman spectroscopy to assess local scale interactions. Samples were prepared via both the sol-gel route and coprecipitation of oxalates by sintering the powders at different temperatures to obtain samples with different defect distributions and crystallite sizes, investigated using electron microscopy and Whole Powder Pattern Modelling from diffraction data. As a general scheme, increasing the doping amount transforms the fluorite structure of ceria into C-type GdO. For samples annealed at and above 900 °C, containing crystals at least ∼100 nm in size, this transformation occurs through a mechanism involving first the formation of distorted Gd-rich droplets on the local scale, then the growth of extended C-type nanodomains. Nanoparticles, resulting from thermal treatments at lower temperature, are less distorted on the local scale and transform abruptly upon doping, without forming larger dopant-rich aggregations, from fluorite to the C-type. The annealing temperature not only acts on the sintering of the crystallites, it is also found to promote a radical change in the microstructure as a consequence of the preferential aggregation of oxygen vacancies.
本文研究了不同合成途径下重钆掺杂二氧化铈(CeREO,0.313≤μ≤0.438)的缺陷结构和微观结构演变,以探索在已知会有效阻碍该材料作为电解质应用的成分范围内缺陷之间的相互作用方式。通过将传统的Rietveld分析与对分布函数相结合,利用同步辐射粉末衍射来获得缺陷结构的多尺度图像,并将其与拉曼光谱相结合以评估局部尺度的相互作用。通过溶胶-凝胶法和草酸盐共沉淀法制备样品,将粉末在不同温度下烧结以获得具有不同缺陷分布和微晶尺寸的样品,使用电子显微镜和基于衍射数据的全粉末图案建模进行研究。一般来说,增加掺杂量会将二氧化铈的萤石结构转变为C型氧化钆。对于在900℃及以上退火的样品,其晶体尺寸至少约为100nm,这种转变通过一种机制发生,该机制首先涉及在局部尺度上形成扭曲的富钆液滴,然后是扩展的C型纳米域的生长。低温热处理产生的纳米颗粒在局部尺度上的扭曲较小,并且在掺杂时会突然转变,不会形成更大的富掺杂剂聚集体,从萤石转变为C型。退火温度不仅影响微晶的烧结,还发现由于氧空位的优先聚集,它会促进微观结构的剧烈变化。