Lv Tao, Qv Jia, Yan Limin, Li Yan, Tao Qiang, Zhu Pinwen, Wang Xin
State Key Laboratory of High Pressure and Superhard Materials, Jilin University, Changchun 130012, China.
College of Physics, Jilin University, Changchun 130012, China.
Materials (Basel). 2025 Jun 10;18(12):2729. doi: 10.3390/ma18122729.
The structural evolution of HoCeO under high pressure was systematically investigated using synchrotron X-ray diffraction (up to 31.5 GPa) and Raman spectroscopy (up to 41.7 GPa). At ambient pressure, the compound adopts a common C-type cubic rare earth oxide structure (space group ). A pressure-induced phase transition was observed to commence at 23.8 GPa, characterized by a gradual structural evolution that persisted through the maximum experimental pressure of 31.5 GPa. This transition involves cation disordering accompanied by coordination environment modifications. High-pressure X-ray diffraction analysis reveals the coexistence of two distinct phases above the transition threshold: the parent cubic phase () and a metastable hexagonal phase (). Notably, the high-pressure phase configuration persists upon complete decompression to ambient conditions, demonstrating the irreversible nature of this pressure-induced structural transition.
利用同步辐射X射线衍射(高达31.5吉帕)和拉曼光谱(高达41.7吉帕)系统地研究了高压下HoCeO的结构演变。在常压下,该化合物采用常见的C型立方稀土氧化物结构(空间群)。观察到在23.8吉帕开始发生压力诱导的相变,其特征是结构逐渐演变,这种演变一直持续到31.5吉帕的最大实验压力。这种转变涉及阳离子无序化并伴有配位环境的改变。高压X射线衍射分析表明,在转变阈值以上存在两个不同的相共存:母立方相()和亚稳六方相()。值得注意的是,在完全减压至常压条件后,高压相构型仍然存在,这表明这种压力诱导的结构转变具有不可逆性。