Waters Joshua C, Nixon Andrew, Dwyer Morgan, Biffinger Justin C, Lee Kwangwon
Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
J Ind Microbiol Biotechnol. 2017 Aug;44(8):1137-1144. doi: 10.1007/s10295-017-1941-0. Epub 2017 Apr 20.
The demand for renewable and sustainable energy has generated considerable interest in the conversion of cellulosic biomass into liquid fuels such as ethanol using a filamentous fungus. While attempts have been made to study cellulose metabolism through the use of knock-out mutants, there have been no systematic effort to characterize natural variation for cellulose metabolism in ecotypes adapted to different habitats. Here, we characterized natural variation in saccharification of cellulose and fermentation in 73 ecotypes and 89 laboratory strains of the model fungus Neurospora crassa. We observed significant variation in both traits among natural and laboratory generated populations, with some elite strains performing better than the reference strain. In the F1 population N345, 15% of the population outperformed both parents with the top performing strain having 10% improvement in ethanol production. These results suggest that natural alleles can be exploited through fungal breeding for developing elite industrial strains for bioethanol production.
对可再生和可持续能源的需求引发了人们对利用丝状真菌将纤维素生物质转化为乙醇等液体燃料的浓厚兴趣。虽然已经有人尝试通过使用基因敲除突变体来研究纤维素代谢,但尚未有系统的努力来表征适应不同栖息地的生态型中纤维素代谢的自然变异。在此,我们对模式真菌粗糙脉孢菌的73个生态型和89个实验室菌株的纤维素糖化和发酵的自然变异进行了表征。我们观察到自然群体和实验室产生的群体在这两个性状上都存在显著变异,一些优良菌株的表现优于参考菌株。在F1群体N345中,15%的群体表现优于双亲,表现最佳的菌株乙醇产量提高了10%。这些结果表明,可以通过真菌育种利用自然等位基因来开发用于生物乙醇生产的优良工业菌株。