Coughlin Justin G, Yu Zhongjie, Elliott Emily M
Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Rapid Commun Mass Spectrom. 2017 Jul 30;31(14):1211-1220. doi: 10.1002/rcm.7885.
Nitrogen oxides or NO (NO = NO + NO ) play an important role in air quality, atmospheric chemistry, and climate. The isotopic compositions of anthropogenic and natural NO sources are wide-ranging, and they can be used to constrain sources of ambient NO and associated atmospheric deposition of nitrogen compounds. While passive sample collection of NO isotopes has been used in field studies to determine NO source influences on atmospheric deposition, this approach has not been evaluated for accuracy or precision under different environmental conditions.
The efficacy of NO passive sampler collection for NO isotopes was evaluated under varied temperature and relative humidity (RH) conditions in a dynamic flux chamber. The precision and accuracy of the filter NO collection as nitrite (NO ) for isotopic analysis were determined using a reference NO gas tank and through inter-calibration with a modified EPA Method 7. The bacterial denitrifer method was used to convert 20 μM of collected NO or nitrate (NO ) into N O and was carried out on an Isoprime continuous flow isotope ratio mass spectrometer.
δ N-NO values determined from passive NO collection, in conditions of 11-34 °C, 1-78% RH, have an overall accuracy and precision of ±2.1 ‰, and individual run precision of ±0.6 ‰. δ O-NO values obtained from passive NO sampler collection, under the same conditions, have an overall precision of ± 1.3 ‰.
Suitable conditions for passive sampler collection of NO isotopes are in environments ranging from 11 to 34 °C and 1 to 78% RH. The passive NO isotope measurement technique provides an accurate method to determine variations in atmospheric δ N-NO values and a precise method for determining atmospheric δ O-NO values. The ability to measure NO isotopes over spatial gradients at the same temporal resolution provides a unique perspective on the extent and seasonality of fluctuations in atmospheric NO isotopic compositions. Copyright © 2017 John Wiley & Sons, Ltd.
氮氧化物或一氧化氮(NO = NO + NO )在空气质量、大气化学和气候中起着重要作用。人为和天然一氧化氮源的同位素组成范围广泛,可用于确定环境中一氧化氮的来源以及相关的氮化合物大气沉降。虽然在野外研究中已使用一氧化氮同位素的被动样品采集来确定一氧化氮源对大气沉降的影响,但该方法在不同环境条件下的准确性或精密度尚未得到评估。
在动态通量室中,在不同温度和相对湿度(RH)条件下评估了一氧化氮被动采样器对一氧化氮同位素的采集效果。使用参考一氧化氮气罐并通过与改进的EPA方法7进行相互校准,确定了作为亚硝酸盐(NO )用于同位素分析的过滤器一氧化氮采集的精密度和准确性。使用细菌反硝化法将收集到的20 μM一氧化氮或硝酸盐(NO )转化为N O,并在Isoprime连续流同位素比率质谱仪上进行。
在11 - 34 °C、1 - 78% RH条件下,通过被动一氧化氮采集测定的δ N-NO值的总体准确度和精密度为±2.1‰,单次运行精密度为±0.6‰。在相同条件下,通过被动一氧化氮采样器采集获得的δ O-NO值的总体精密度为±1.3‰。
被动采样器采集一氧化氮同位素的合适条件是在11至34 °C和1至78% RH的环境中。被动一氧化氮同位素测量技术提供了一种准确的方法来确定大气δ N-NO值的变化,以及一种精确的方法来确定大气δ O-NO值。在相同时间分辨率下测量空间梯度上的一氧化氮同位素的能力为大气一氧化氮同位素组成波动的程度和季节性提供了独特的视角。版权所有© 2017 John Wiley & Sons, Ltd.