Departamento de Solos, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Alegre, Espírito Santo 29000-000, Brazil.
Sci Total Environ. 2017 Oct 15;596-597:124-135. doi: 10.1016/j.scitotenv.2017.03.144. Epub 2017 Apr 18.
The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg and 5.22gkg for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols.
不断上升的气温趋势可能会影响到海洋南极洲陆地生态系统中的土壤有机物质 (SOM) 转化和土壤 C-CO 排放。SOM 质量对这一过程的影响仍鲜有研究。我们评估了 (i) 不同土壤类型的海洋南极洲凯勒半岛和阿特罗夫斯基站附近的土壤有机物质数量和质量,以及 (ii) 在不同温度条件下 (2、5、8 和 11°C) 实验室条件下通过 CO 排放释放 C 的潜力。土壤样品(0-10 和 10-20cm)被收集,以确定有机物质的数量和质量以及在不同温度条件下(2、5、8 和 11°C)通过 CO 排放释放 C 的潜力。土壤有机物质矿化作用较低,特别是在有机 C 和 N 含量较低的土壤中。稳定态 C 形式占主导地位,特别是在惰性库中,这与腐殖质有关。鸟粪土壤的 C 和 N 含量较高(总有机碳和氮的含量分别达到 43.15gkg 和 5.22gkg)。C 和 N 更多地存在于腐殖酸中。玄武岩/安山岩上的浅层土壤记录到最低的 C 矿化作用。2°C 时的 C 矿化率明显低于高温时。鸟粪土壤的 C-CO 矿化量 g C 最低。另一方面,玄武岩/安山岩上的浅层土壤是 g C 最敏感的 C-CO 排放源。随着永冻层的退化,玄武岩/安山岩和硫酸盐土壤预计将比鸟粪土壤释放更多的 C-CO。随着粘粒含量的增加,土壤有机物质受到更多的保护,微生物活性和矿化作用降低。土壤温度升高的趋势将有利于 C-CO 排放,特别是在储存和保护在永冻层中的 C 减少的库中,或者在偶尔的 Histosols 中。