Suppr超能文献

用于从图像预测蛋白质结构的隐马尔可夫模型和查普曼-柯尔莫哥洛夫方程

Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images.

作者信息

Kamal Md Sarwar, Chowdhury Linkon, Khan Mohammad Ibrahim, Ashour Amira S, Tavares João Manuel R S, Dey Nilanjan

机构信息

East West University, Bangladesh.

Chittagong University of Engineering and Technology, Bangladesh.

出版信息

Comput Biol Chem. 2017 Jun;68:231-244. doi: 10.1016/j.compbiolchem.2017.04.003. Epub 2017 Apr 13.

Abstract

Protein structure prediction and analysis are more significant for living organs to perfect asses the living organ functionalities. Several protein structure prediction methods use neural network (NN). However, the Hidden Markov model is more interpretable and effective for more biological data analysis compared to the NN. It employs statistical data analysis to enhance the prediction accuracy. The current work proposed a protein prediction approach from protein images based on Hidden Markov Model and Chapman Kolmogrov equation. Initially, a preprocessing stage was applied for protein images' binarization using Otsu technique in order to convert the protein image into binary matrix. Subsequently, two counting algorithms, namely the Flood fill and Warshall are employed to classify the protein structures. Finally, Hidden Markov model and Chapman Kolmogrov equation are applied on the classified structures for predicting the protein structure. The execution time and algorithmic performances are measured to evaluate the primary, secondary and tertiary protein structure prediction.

摘要

蛋白质结构预测和分析对于准确评估活体器官的功能更为重要。几种蛋白质结构预测方法使用神经网络(NN)。然而,与神经网络相比,隐马尔可夫模型对于更多生物数据分析更具可解释性且更有效。它采用统计数据分析来提高预测准确性。当前工作提出了一种基于隐马尔可夫模型和查普曼 - 柯尔莫哥洛夫方程从蛋白质图像进行蛋白质预测的方法。首先,应用预处理阶段,使用大津法对蛋白质图像进行二值化处理,以便将蛋白质图像转换为二进制矩阵。随后,采用两种计数算法,即泛洪填充算法和沃肖尔算法对蛋白质结构进行分类。最后,将隐马尔可夫模型和查普曼 - 柯尔莫哥洛夫方程应用于分类后的结构以预测蛋白质结构。通过测量执行时间和算法性能来评估蛋白质的一级、二级和三级结构预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验