Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
J Chem Phys. 2017 Apr 21;146(15):154304. doi: 10.1063/1.4980033.
Nowadays, much attention is put toward the description of noncovalent complexes exposed to the high pressure or embedded in confining environments. Such conditions may strongly modify the physical and chemical properties of molecular systems. This study focuses on the theoretical description of the confinement induced changes in geometry and energetic parameters of the halogen bonded FCl⋯CNF complex. A model analytical potential is applied to render the effect of orbital compression. In order to analyze the nature of halogen bond interaction, in the presence of spatial confinement, the supermolecular approach together with the symmetry-adapted perturbation theory is used. Furthermore, a thorough analysis of topological parameters, characterizing the halogen bond upon orbital compression, is performed within the quantum theory of atoms in molecules. The calculations are carried out using the ωB97x and CCSD(T) methods in connection with the aug-cc-pVTZ basis set. Among others, the obtained results indicate that the spatial confinement not only modifies the nature of halogen bond interaction but also induces the appearance of a completely new form of the studied FCl⋯CNF system.
如今,人们非常关注暴露于高压或嵌入约束环境中的非共价复合物的描述。这种条件可能会强烈改变分子系统的物理和化学性质。本研究专注于理论描述卤键 FCl⋯CNF 复合物的几何形状和能量参数在约束下引起的变化。应用模型分析势能来呈现轨道压缩的效果。为了分析卤键相互作用的本质,在存在空间约束的情况下,使用超分子方法和对称性自适应微扰理论。此外,在分子轨道中的原子量子理论中,对轨道压缩时卤键的拓扑参数进行了彻底分析。使用 ωB97x 和 CCSD(T)方法以及 aug-cc-pVTZ 基组进行计算。结果表明,空间约束不仅改变了卤键相互作用的性质,而且还诱导了所研究的 FCl⋯CNF 系统的完全新形式的出现。