Suppr超能文献

肢骨纹状肥大症:一种相关皮肤病的外显子组测序表明存在KRAS基因突变的合子后镶嵌现象。

Melorheostosis: Exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS.

作者信息

Whyte Michael P, Griffith Malachi, Trani Lee, Mumm Steven, Gottesman Gary S, McAlister William H, Krysiak Kilannin, Lesurf Robert, Skidmore Zachary L, Campbell Katie M, Rosman Ilana S, Bayliss Susan, Bijanki Vinieth N, Nenninger Angela, Van Tine Brian A, Griffith Obi L, Mardis Elaine R

机构信息

Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.

McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Bone. 2017 Aug;101:145-155. doi: 10.1016/j.bone.2017.04.010. Epub 2017 Apr 21.

Abstract

Melorheostosis (MEL) is the rare sporadic dysostosis characterized by monostotic or polyostotic osteosclerosis and hyperostosis often distributed in a sclerotomal pattern. The prevailing hypothesis for MEL invokes postzygotic mosaicism. Sometimes scleroderma-like skin changes, considered a representation of the pathogenetic process of MEL, overlie the bony changes, and sometimes MEL becomes malignant. Osteopoikilosis (OPK) is the autosomal dominant skeletal dysplasia that features symmetrically distributed punctate osteosclerosis due to heterozygous loss-of-function mutation within LEMD3. Rarely, radiographic findings of MEL occur in OPK. However, germline mutation of LEMD3 does not explain sporadic MEL. To explore if mosaicism underlies MEL, we studied a boy with polyostotic MEL and characteristic overlying scleroderma-like skin, a few bony lesions consistent with OPK, and a large epidermal nevus known to usually harbor a HRAS, FGFR3, or PIK3CA gene mutation. Exome sequencing was performed to ~100× average read depth for his two dermatoses, two areas of normal skin, and peripheral blood leukocytes. As expected for non-malignant tissues, the patient's mutation burden in his normal skin and leukocytes was low. He, his mother, and his maternal grandfather carried a heterozygous, germline, in-frame, 24-base-pair deletion in LEMD3. Radiographs of the patient and his mother revealed bony foci consistent with OPK, but she showed no MEL. For the patient, somatic variant analysis, using four algorithms to compare all 20 possible pairwise combinations of his five DNA samples, identified only one high-confidence mutation, heterozygous KRAS Q61H (NM_033360.3:c.183A>C, NP_203524.1:p.Gln61His), in both his dermatoses but absent in his normal skin and blood. Thus, sparing our patient biopsy of his MEL bone, we identified a heterozygous somatic KRAS mutation in his scleroderma-like dermatosis considered a surrogate for MEL. This implicates postzygotic mosaicism of mutated KRAS, perhaps facilitated by germline LEMD3 haploinsufficiency, causing his MEL.

摘要

骨纹状肥大(MEL)是一种罕见的散发性骨发育异常,其特征为单骨或多骨的骨硬化和骨质增生,常呈节段性分布。关于MEL的主流假说是合子后镶嵌现象。有时,类似硬皮病的皮肤改变被认为是MEL致病过程的一种表现,覆盖在骨骼改变之上,有时MEL会发生恶变。骨斑点症(OPK)是一种常染色体显性遗传性骨骼发育异常,由于LEMD3基因杂合性功能丧失突变,其特征为对称分布的点状骨硬化。很少有MEL的影像学表现出现在OPK中。然而,LEMD3的种系突变并不能解释散发性MEL。为了探究镶嵌现象是否是MEL的基础,我们研究了一名患有多骨性MEL且有典型的类似硬皮病皮肤覆盖、一些与OPK一致的骨病变以及一个通常携带HRAS、FGFR3或PIK3CA基因突变的大表皮痣的男孩。对他的两种皮肤病、两个正常皮肤区域和外周血白细胞进行外显子测序,平均测序深度约为100倍。正如非恶性组织所预期的那样,患者正常皮肤和白细胞中的突变负荷较低。他、他的母亲和他的外祖父在LEMD3基因中携带一个杂合的、种系的、框内的24个碱基对缺失。患者及其母亲的X线片显示有与OPK一致的骨病灶,但她没有MEL表现。对于该患者,使用四种算法对其五个DNA样本的所有20种可能的两两组合进行比较的体细胞变异分析,仅在他的两种皮肤病中鉴定出一个高置信度突变,即杂合的KRAS Q61H(NM_033360.3:c.183A>C,NP_203524.1:p.Gln61His),而在他的正常皮肤和血液中未出现。因此,在未对患者的MEL骨进行活检的情况下,我们在他被认为是MEL替代物的类似硬皮病的皮肤病中鉴定出一个杂合的体细胞KRAS突变。这意味着突变的KRAS的合子后镶嵌现象,可能是由种系LEMD3单倍体不足促成的,导致了他的MEL。

相似文献

1
Melorheostosis: Exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS.
Bone. 2017 Aug;101:145-155. doi: 10.1016/j.bone.2017.04.010. Epub 2017 Apr 21.
3
Melorheostosis and Osteopoikilosis Clinical and Molecular Description of an Italian Case Series.
Calcif Tissue Int. 2019 Aug;105(2):215-221. doi: 10.1007/s00223-019-00565-6. Epub 2019 May 25.
5
Buschke-Ollendorff syndrome: absence of LEMD3 mutation in an affected family.
Arch Dermatol. 2010 Jan;146(1):63-8. doi: 10.1001/archdermatol.2009.320.
6
Melorheostosis and Osteopoikilosis: A Review of Clinical Features and Pathogenesis.
Calcif Tissue Int. 2019 May;104(5):530-543. doi: 10.1007/s00223-019-00543-y. Epub 2019 Apr 15.
7
9
A novel LEMD3 mutation common to patients with osteopoikilosis with and without melorheostosis.
Calcif Tissue Int. 2007 Aug;81(2):81-4. doi: 10.1007/s00223-007-9043-z. Epub 2007 Jul 11.
10
Novel and recurrent germline LEMD3 mutations causing Buschke-Ollendorff syndrome and osteopoikilosis but not isolated melorheostosis.
Clin Genet. 2009 Jun;75(6):556-61. doi: 10.1111/j.1399-0004.2009.01177.x. Epub 2009 May 5.

引用本文的文献

1
Modified criteria for identifying elevated bone mass.
Osteoporos Int. 2025 Jun 6. doi: 10.1007/s00198-025-07551-9.
2
Unraveling melorheostosis: insights into clinical features, diagnosis, and treatment.
JBMR Plus. 2024 Dec 11;9(2):ziae163. doi: 10.1093/jbmrpl/ziae163. eCollection 2025 Feb.
3
Late-Onset Melorheostosis: A Case Report.
Case Rep Oncol. 2023 Oct 26;16(1):1237-1244. doi: 10.1159/000534241. eCollection 2023 Jan-Dec.
5
High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench.
J Bone Miner Res. 2023 Feb;38(2):229-247. doi: 10.1002/jbmr.4715. Epub 2022 Oct 21.
6
Clinical characteristics of 10 Chinese patients with melorheostosis and identification of a somatic MAP2K1 variant in one case.
Mol Genet Genomic Med. 2022 Oct;10(10):e2043. doi: 10.1002/mgg3.2043. Epub 2022 Aug 25.
8
Spinal Melorheostosis: A Rare Cause for Thoracic Radiculopathy.
Int J Spine Surg. 2020 Apr 30;14(2):209-212. doi: 10.14444/7027. eCollection 2020 Apr.
10
High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders.
Front Endocrinol (Lausanne). 2020 Feb 4;10:934. doi: 10.3389/fendo.2019.00934. eCollection 2019.

本文引用的文献

1
Cutaneous skeletal hypophosphatemia syndrome: clinical spectrum, natural history, and treatment.
Osteoporos Int. 2016 Dec;27(12):3615-3626. doi: 10.1007/s00198-016-3702-8. Epub 2016 Aug 6.
2
GenVisR: Genomic Visualizations in R.
Bioinformatics. 2016 Oct 1;32(19):3012-4. doi: 10.1093/bioinformatics/btw325. Epub 2016 Jun 10.
3
Optimizing cancer genome sequencing and analysis.
Cell Syst. 2015 Sep 23;1(3):210-223. doi: 10.1016/j.cels.2015.08.015.
4
ClinVar: public archive of interpretations of clinically relevant variants.
Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub 2015 Nov 17.
6
RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression.
Mol Cancer. 2015 Jul 25;14:137. doi: 10.1186/s12943-015-0404-3.
7
Genome Modeling System: A Knowledge Management Platform for Genomics.
PLoS Comput Biol. 2015 Jul 9;11(7):e1004274. doi: 10.1371/journal.pcbi.1004274. eCollection 2015 Jul.
9
MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells.
Oncotarget. 2014 Oct 15;5(19):8893-905. doi: 10.18632/oncotarget.2360.
10
mutational concordance between primary and metastatic colorectal adenocarcinoma.
Oncol Lett. 2014 Oct;8(4):1422-1426. doi: 10.3892/ol.2014.2411. Epub 2014 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验