Rahman Asif, Lafon Belen, Parra Lucas C, Bikson Marom
Department of Biomedical Engineering, The City College of The City University of New York, Steinman Hall, 160 Convent Ave, New York, NY, 10031, USA.
J Physiol. 2017 Jun 1;595(11):3535-3547. doi: 10.1113/JP273005. Epub 2017 Apr 23.
Direct current stimulation (DCS) polarity specifically modulates synaptic efficacy during a continuous train of presynaptic inputs, despite synaptic depression. DCS polarizes afferent axons and postsynaptic neurons, boosting cooperativity between synaptic inputs. Polarization of afferent neurons in upstream brain regions may modulate activity in the target brain region during transcranial DCS (tDCS). A statistical theory of coincident activity predicts that the diffuse and weak profile of current flow can be advantageous in enhancing connectivity between co-active brain regions.
Transcranial direct current stimulation (tDCS) produces sustained and diffuse current flow in the brain with effects that are state dependent and outlast stimulation. A mechanistic explanation for tDCS should capture these spatiotemporal features. It remains unclear how sustained DCS affects ongoing synaptic dynamics and how modulation of afferent inputs by diffuse stimulation changes synaptic activity at the target brain region. We tested the effect of acute DCS (10-20 V m for 3-5 s) on synaptic dynamics with constant rate (5-40 Hz) and Poisson-distributed (4 Hz mean) trains of presynaptic inputs. Across tested frequencies, sustained synaptic activity was modulated by DCS with polarity-specific effects. Synaptic depression attenuates the sensitivity to DCS from 1.1% per V m to 0.55%. DCS applied during synaptic activity facilitates cumulative neuromodulation, potentially reversing endogenous synaptic depression. We establish these effects are mediated by both postsynaptic membrane polarization and afferent axon fibre polarization, which boosts cooperativity between synaptic inputs. This potentially extends the locus of neuromodulation from the nominal target to afferent brain regions. Based on these results we hypothesized the polarization of afferent neurons in upstream brain regions may modulate activity in the target brain region during tDCS. A multiscale model of transcranial electrical stimulation including a finite element model of brain current flow, numerical simulations of neuronal activity, and a statistical theory of coincident activity predicts that the diffuse and weak profile of current flow can be advantageous. Thus, we propose that specifically because tDCS is diffuse, weak and sustained it can boost connectivity between co-active brain regions.
尽管存在突触抑制,但在连续的一系列突触前输入期间,直流电刺激(DCS)的极性会特异性地调节突触效能。DCS使传入轴突和突触后神经元极化,增强突触输入之间的协同性。在经颅直流电刺激(tDCS)期间,上游脑区传入神经元的极化可能会调节目标脑区的活动。一种重合活动的统计理论预测,电流扩散且微弱的分布在增强共同激活的脑区之间的连接性方面可能具有优势。
经颅直流电刺激(tDCS)在大脑中产生持续且扩散的电流,其效应取决于状态且在刺激结束后仍持续存在。对tDCS的机制性解释应涵盖这些时空特征。目前尚不清楚持续的DCS如何影响正在进行的突触动力学,以及扩散刺激对传入输入的调制如何改变目标脑区的突触活动。我们测试了急性DCS(10 - 20 V/m,持续3 - 5秒)对以恒定速率(5 - 40 Hz)和泊松分布(平均4 Hz)的突触前输入序列的突触动力学的影响。在所有测试频率下,持续的突触活动受到DCS的调制,且具有极性特异性效应。突触抑制将对DCS的敏感性从每V/m 1.1%降低至0.55%。在突触活动期间施加DCS有助于累积神经调节,可能会逆转内源性突触抑制。我们确定这些效应是由突触后膜极化和传入轴突纤维极化共同介导的,这增强了突触输入之间的协同性。这可能将神经调节的位点从名义上的目标扩展到传入脑区。基于这些结果,我们假设在tDCS期间,上游脑区传入神经元的极化可能会调节目标脑区的活动。一个经颅电刺激的多尺度模型,包括脑电流流动的有限元模型、神经元活动的数值模拟以及一种重合活动的统计理论预测,电流扩散且微弱的分布可能具有优势。因此,我们提出,正是因为tDCS具有扩散、微弱和持续的特点,它可以增强共同激活的脑区之间的连接性。