IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):918-930. doi: 10.1109/TPAMI.2017.2695183. Epub 2017 Apr 18.
Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic part model. We extract local descriptors (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each descriptor with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of the face parts of all face images in the training corpus, namely the probabilistic elastic part (PEP) model. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms, which naturally defines a part. Given one or multiple face images of the same subject, the PEP-model builds its PEP representation by sequentially concatenating descriptors identified by each Gaussian component in a maximum likelihood sense. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that we achieve state-of-the-art face verification accuracy with the proposed representations on the Labeled Face in the Wild (LFW) dataset, the YouTube video face database, and the CMU MultiPIE dataset.
姿态变化仍然是现实人脸识别的主要挑战。我们通过概率弹性部分模型来解决这个问题。我们从密集采样的多尺度图像块中提取局部描述符(例如 LBP 或 SIFT)。通过为每个描述符添加其位置信息,我们训练一个高斯混合模型(GMM)来捕获训练语料库中所有人脸图像的人脸部分的空间外观分布,即概率弹性部分(PEP)模型。GMM 的每个混合分量都限制为球形高斯,以平衡外观和位置项的影响,这自然定义了一个部分。给定同一个主体的一个或多个人脸图像,PEP 模型通过以最大似然的方式顺序连接每个高斯分量识别的描述符来构建其 PEP 表示。我们进一步提出了一种联合贝叶斯自适应算法,以适应普遍训练的 GMM,从而更好地模拟目标人脸对/人脸轨迹之间的姿态变化,从而一致地提高人脸验证准确性。我们的实验表明,我们在 Labeled Faces in the Wild(LFW)数据集、YouTube 视频人脸数据库和 CMU MultiPIE 数据集上使用所提出的表示方法实现了最先进的人脸验证准确性。