Suppr超能文献

电场驱动直接脱硫。

Electric-Field-Driven Direct Desulfurization.

机构信息

Max Planck Institute for Solid State Research , 70569 Stuttgart, Germany.

National Institute of Materials Physics , 077125 Măgurele-Ilfov, Romania.

出版信息

ACS Nano. 2017 May 23;11(5):4703-4709. doi: 10.1021/acsnano.7b00612. Epub 2017 May 1.

Abstract

The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon-sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm, practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.

摘要

阐明化学反应在原子尺度上的基本步骤对于详细了解所涉及的过程至关重要,这是揭示改进反应途径的关键。在这里,我们在亚分子水平上追踪了吸附在 Cu(111)密堆积表面上的四环噻吩不可逆直接脱硫反应的化学途径。通过在扫描隧道显微镜中精确控制针尖位置和在隧道结上施加电场,噻吩单元的两个碳-硫键被依次切断。在每个反应步骤中,与金属衬底费米能级接近的空间映射分子态与密度泛函理论计算的比较揭示了该反应机制的两个基本步骤。第一个反应步骤由大于 2 V nm 的电场激活,实际上不存在隧道电子,打开噻吩环并导致瞬态中间体。随后,在相同的阈值电场和同时向分子注入电子的情况下,引发了硫原子的放能脱离。因此,获得了一个带有分叉末端的稳定分子,它与金属表面共价结合。硫原子从分子附近被排出。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验