Suppr超能文献

基于X射线光子计数探测器的K边造影剂分布模型与重建

Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector.

作者信息

Meng Bo, Cong Wenxiang, Xi Yan, De Man Bruno, Yang Jian, Wang Ge

出版信息

Opt Express. 2017 Apr 17;25(8):9378-9392. doi: 10.1364/OE.25.009378.

Abstract

Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency.

摘要

对比增强计算机断层扫描(CECT)有助于提高肿瘤成像的可见性。当高Z值造影剂在其K边与X射线相互作用时,X射线光电吸收会突然增加,导致K边左右能量窗之间的X射线透射强度出现显著差异。使用光子计数探测器,可以同时测量K边左右窗内的X射线强度数据。两种强度数据的差异信息反映了造影剂浓度分布。各种物质之间的K边差异为生物医学应用中造影剂的识别提供了机会。本文建立了一种通用的拉东变换,将造影剂浓度与X射线强度测量数据联系起来。提出了一种迭代算法,用于同时重建造影剂分布和组织衰减背景。进行了全面的数值模拟,以证明所提方法相对于现有K边成像方法的优点。我们的结果表明,所提方法能够准确量化造影剂的分布,以高剂量效率优化对比度噪声比。

相似文献

2
Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.
IEEE Trans Med Imaging. 2011 Sep;30(9):1678-90. doi: 10.1109/TMI.2011.2142188. Epub 2011 Apr 15.
3
Energy Window Optimization for X-Ray K-Edge Tomographic Imaging.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1623-30. doi: 10.1109/TBME.2015.2413816. Epub 2015 Mar 18.
4
Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
Med Phys. 2016 Mar;43(3):1385-400. doi: 10.1118/1.4941742.
5
Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
Phys Med Biol. 2012 Mar 21;57(6):1595-615. doi: 10.1088/0031-9155/57/6/1595. Epub 2012 Mar 7.
7
K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors.
Phys Med Biol. 2007 Aug 7;52(15):4679-96. doi: 10.1088/0031-9155/52/15/020. Epub 2007 Jul 17.
9
Region-of-interest material decomposition from truncated energy-resolved CT.
Med Phys. 2011 Oct;38(10):5657-66. doi: 10.1118/1.3641749.
10
Spectral CT: a technology primer for contrast agent development.
Contrast Media Mol Imaging. 2014 Jan-Feb;9(1):62-70. doi: 10.1002/cmmi.1573.

引用本文的文献

1
Photon-counting computed tomography in radiology.
Pol J Radiol. 2024 Sep 11;89:e433-e442. doi: 10.5114/pjr/191743. eCollection 2024.
2
An introduction to photon-counting detector CT (PCD CT) for radiologists.
Jpn J Radiol. 2023 Mar;41(3):266-282. doi: 10.1007/s11604-022-01350-6. Epub 2022 Oct 18.
3
Contrast-Enhanced CT-Based Radiomics Analysis in Predicting Lymphovascular Invasion in Esophageal Squamous Cell Carcinoma.
Front Oncol. 2021 May 14;11:644165. doi: 10.3389/fonc.2021.644165. eCollection 2021.
4
Nanophosphor-Based Contrast Agents for Spectral X-ray Imaging.
Nanomaterials (Basel). 2019 Jul 30;9(8):1092. doi: 10.3390/nano9081092.

本文引用的文献

1
Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.
PLoS One. 2016 May 12;11(5):e0155374. doi: 10.1371/journal.pone.0155374. eCollection 2016.
2
Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer.
PLoS One. 2016 Mar 31;11(3):e0152718. doi: 10.1371/journal.pone.0152718. eCollection 2016.
3
Energy Window Optimization for X-Ray K-Edge Tomographic Imaging.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1623-30. doi: 10.1109/TBME.2015.2413816. Epub 2015 Mar 18.
5
Simulation tools for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom.
Phys Med Biol. 2012 Jul 7;57(13):N237-52. doi: 10.1088/0031-9155/57/13/N237. Epub 2012 Jun 20.
7
Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.
IEEE Trans Nucl Sci. 2009;56(3):535-542. doi: 10.1109/TNS.2009.2013709.
10
Synchrotron-based intra-venous K-edge digital subtraction angiography in a pig model: a feasibility study.
Eur J Radiol. 2010 Mar;73(3):677-81. doi: 10.1016/j.ejrad.2009.01.019. Epub 2009 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验