CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 588 Heshuo Road, Shanghai 201899, P. R. China.
University of Chinese Academy of Sciences , Beijing 100039, P. R. China.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16202-16214. doi: 10.1021/acsami.7b02323. Epub 2017 May 2.
A novel bulk heterojunction (BHJ) perovskite solar cell (PSC), where the perovskite grains act as donor and the TiO nanoparticles act as acceptor, is reported. This efficient BHJ PSC was simply solution processed from a mixed precursor of CHNHPbI (MAPbI) and TiO nanoparticles. With dissolution and recrystallization by multi-cycle-coating, a unique composite structure ranging from a MAPbI-TiO-dominated layer on the substrate side to a pure perovskite layer on the top side is formed, which is beneficial for the blocking of possible contact between TiO and the hole transport material at the interface. Scanning electron microscopy clearly shows that TiO nanoparticles accumulate along the grain boundaries (GBs) of perovskite. The TiO nanoparticles at the GBs quickly extract and reserve photogenerated electrons before they transport into the perovskite phase, as described in the multitrapping model, retarding the electron-hole recombination and reducing the energy loss, resulting in increased V and fill factor. Moreover, the pinning effect of the TiO nanoparticles at the GBs from the strong bindings between TiO and MAPbI suppresses massive ion migration along the GBs, leading to improved operational stability and diminished hysteresis. Photoluminescence (PL) quenching and PL decay confirm the efficient exciton dissociation on the heterointerface. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements show the reduced recombination loss and improved carrier lifetime of the BHJ PSCs. This novel strategy of device design effectively combines the benefits of both planar and mesostructured architectures whilst avoiding their shortcomings, eventually leading to a high PCE of 17.42% under 1 Sun illumination. The newly proposed approach also provides a new way to fabricate a TiO-containing perovskite active layer at a low temperature.
一种新型的体异质结(BHJ)钙钛矿太阳能电池(PSC),其中钙钛矿晶粒作为供体,TiO 纳米粒子作为受体,被报道。这种高效的 BHJ PSC 是通过 CHNHPbI(MAPbI)和 TiO 纳米粒子的混合前体制备的,通过多次涂层溶解和再结晶,形成了一种独特的复合结构,从衬底侧的以 MAPbI-TiO 为主的层到顶部的纯钙钛矿层,这有利于阻止 TiO 和空穴传输材料在界面处的可能接触。扫描电子显微镜清楚地显示,TiO 纳米粒子在钙钛矿晶粒的晶界(GB)处聚集。TiO 纳米粒子在 GB 处快速提取和保留光生电子,然后将其输送到钙钛矿相中,正如多陷阱模型所描述的,这延迟了电子-空穴复合,减少了能量损失,导致 V 和填充因子增加。此外,TiO 纳米粒子在 GB 处的钉扎效应来自 TiO 和 MAPbI 之间的强结合,抑制了沿 GB 的大量离子迁移,提高了器件的稳定性并减少了滞后。光致发光(PL)猝灭和 PL 衰减证实了异质界面上有效的激子解离。电化学阻抗谱和开路光电压衰减测量表明,BHJ PSCs 的复合损失减少,载流子寿命提高。这种新的器件设计策略有效地结合了平面和介孔结构的优点,同时避免了它们的缺点,最终在 1 个太阳光照下获得了 17.42%的高光电转换效率。新提出的方法还为在低温下制备含 TiO 的钙钛矿活性层提供了一种新途径。