Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden.
Nano Lett. 2017 May 10;17(5):3145-3151. doi: 10.1021/acs.nanolett.7b00574. Epub 2017 Apr 28.
Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.
金属纳米结构中的等离子体非辐射衰减为纳米尺度的光热转换提供了独特的手段。典型的热等离子体系统利用离散颗粒,而金属纳米孔阵列则被认为适合作为散热器来减少加热效应。相比之下,我们首次表明,在均匀宽带照明(例如太阳)下,超薄等离子体纳米孔阵列可以成为极具竞争力的等离子体加热器,并提供比类似的纳米盘阵列高得多的温度。我们的等离子体纳米孔阵列的加热效果也明显优于非结构化金属膜,同时提供更高的光透过率。除了作为高效的光驱动热源外,这些薄的穿孔金膜还可以同时用作电极。我们利用这一特性开发了“等离子体热敏电阻”,用于电监测等离子体诱导的温度变化。在模拟阳光下,纳米孔阵列提供的温度变化高达 7.5 K,与类似条件下(太阳光照射和环境条件)以前报道的等离子体系统相比非常高。温度和加热曲线与光学和热模拟的结果定量一致。最后,我们展示了使用热等离子体纳米孔电极来驱动第一个混合等离子体离子热电设备,从而产生强烈的太阳诱导热梯度和相应的热电电压。