Suppr超能文献

用于增强钙钛矿薄膜吸收的等离子体纳米结构阵列

Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.

作者信息

Shen Tianyi, Tan Qiwen, Dai Zhenghong, Padture Nitin P, Pacifici Domenico

机构信息

School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912, USA.

出版信息

Nanomaterials (Basel). 2020 Jul 9;10(7):1342. doi: 10.3390/nano10071342.

Abstract

We report optical characterization and theoretical simulation of plasmon enhanced methylammonium lead iodide (MAPbI 3 ) thin-film perovskite solar cells. Specifically, various nanohole (NH) and nanodisk (ND) arrays are fabricated on gold/MAPbI 3 interfaces. Significant absorption enhancement is observed experimentally in 75 nm and 110 nm-thick perovskite films. As a result of increased light scattering by plasmonic concentrators, the original Fabry-Pérot thin-film cavity effects are suppressed in specific structures. However, thanks to field enhancement caused by plasmonic resonances and in-plane interference of propagating surface plasmon polaritons, the calculated overall power conversion efficiency (PCE) of the solar cell is expected to increase by up to 45.5%, compared to its flat counterpart. The role of different geometry parameters of the nanostructure arrays is further investigated using three dimensional (3D) finite-difference time-domain (FDTD) simulations, which makes it possible to identify the physical origin of the absorption enhancement as a function of wavelength and design parameters. These findings demonstrate the potential of plasmonic nanostructures in further enhancing the performance of photovoltaic devices based on thin-film perovskites.

摘要

我们报道了等离子体增强甲脒碘化铅(MAPbI₃)薄膜钙钛矿太阳能电池的光学表征和理论模拟。具体而言,在金/MAPbI₃界面上制备了各种纳米孔(NH)和纳米盘(ND)阵列。在75纳米和110纳米厚的钙钛矿薄膜中实验观察到显著的吸收增强。由于等离子体聚光器增加了光散射,在特定结构中原有的法布里-珀罗薄膜腔效应受到抑制。然而,由于等离子体共振和传播表面等离子体激元的面内干涉引起的场增强,与平面结构的太阳能电池相比,计算得出的太阳能电池的整体功率转换效率(PCE)预计将提高高达45.5%。使用三维(3D)有限差分时域(FDTD)模拟进一步研究了纳米结构阵列不同几何参数的作用,这使得能够确定吸收增强作为波长和设计参数函数的物理起源。这些发现证明了等离子体纳米结构在进一步提高基于薄膜钙钛矿的光伏器件性能方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d11d/7408564/589c52eb72c9/nanomaterials-10-01342-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验