Robertson D E, Dutton P L
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104.
Biochim Biophys Acta. 1988 Oct 5;935(3):273-91. doi: 10.1016/0005-2728(88)90223-x.
The transdielectric charge separation reaction catalyzed by the ubiquinol-cytochrome c2 oxidoreductase is achieved in two fractional steps. We present a detailed analysis which addresses the nature of the charge transferred, the redox groups directly involved in charge separation and the contributions of each to the full charge separation catalyzed by the enzyme. Accounting for light saturation effects, reaction centers unconnected to cytochrome c2 and the fraction of total cytochrome bc1 turning over per flash permits detailed quantitation of: (1) the red carotenoid bandshift associated with electron transfer between ubiquinol at site Qz and the high- (2Fe2S center, cytochrome c1) and low-potential (cytochrome bL, cytochrome bH) components of cytochrome bc1; (2) the blue bandshift accompanying reduction of cytochrome bH by ubiquinol via site Qc (the reverse of the physiological reaction); and (3) the effect of delta psi on the Qc-cytochrome bH redox equilibrium. Studies were performed at pH values above and below the redox-linked pK values of the redox centers known to be involved in each reaction at equilibrium. The conclusions of this study may be summarized as follows: (1) there is no transdielectric charge separation apparent in the redox reactions between Qz and cytochrome bL, 2Fe2S and cytochrome c1 (in agreement with Glaser, E. and Crofts, A.R. (1984) Biochim. Biophys. Acta 766, 223-235), i.e., charge separation accompanies electron transfer between cytochrome bL and cytochrome bH; (2) the redox reactions between cytochrome bL and cytochrome bH and between cytochrome bH and Qc constitute the full electrogenic span; (3) electron transfer between cytochrome bL and cytochrome bH contributes approx. 60% of this span; (4) electron transfer between cytochrome bH and Qc contributes 45-55% as calculated from the blue bandshift or the delta psi-dependent equilibrium shift; (5) there is no discernable pH dependence of the Qz-cytochrome bH or Qc-cytochrome bH charge-separation reactions; (6) cytochrome bL, Qz, 2Fe2S, and cytochrome c1 are on the periplasmic side out of the low dielectric part of the membrane while cytochrome bH is buried in the low dielectric medium; (7) electron transfer is the predominant if not the sole contributor to charge separation; (8) Qz and Qc are on opposite sides of the membrane dielectric profile.
泛醌 - 细胞色素c2氧化还原酶催化的跨介电电荷分离反应分两个部分步骤完成。我们进行了详细分析,探讨了转移电荷的性质、直接参与电荷分离的氧化还原基团以及每个基团对酶催化的完全电荷分离的贡献。考虑到光饱和效应、与细胞色素c2不相连的反应中心以及每次闪光时周转的总细胞色素bc1的比例,从而能够详细定量分析:(1) 与位点Qz处的泛醌与细胞色素bc1的高电位(2Fe2S中心、细胞色素c1)和低电位(细胞色素bL、细胞色素bH)成分之间的电子转移相关的红色类胡萝卜素带移;(2) 泛醌通过位点Qc还原细胞色素bH时伴随的蓝色带移(生理反应的逆反应);(3) Δψ对Qc - 细胞色素bH氧化还原平衡的影响。研究在高于和低于平衡时已知参与每个反应的氧化还原中心的氧化还原连接pK值的pH值下进行。本研究的结论可总结如下:(1) 在Qz与细胞色素bL、2Fe2S和细胞色素c1之间的氧化还原反应中没有明显的跨介电电荷分离(与Glaser, E.和Crofts, A.R. (1984) Biochim. Biophys. Acta 766, 223 - 235一致),即电荷分离伴随细胞色素bL和细胞色素bH之间的电子转移;(2) 细胞色素bL和细胞色素bH之间以及细胞色素bH和Qc之间的氧化还原反应构成了完整的电生跨度;(3) 细胞色素bL和细胞色素bH之间的电子转移贡献了该跨度的约60%;(4) 根据蓝色带移或Δψ依赖性平衡位移计算,细胞色素bH和Qc之间的电子转移贡献了45 - 55%;(5) Qz - 细胞色素bH或Qc - 细胞色素bH电荷分离反应没有明显的pH依赖性;(6) 细胞色素bL、Qz、2Fe2S和细胞色素c1位于膜低介电部分之外的周质侧,而细胞色素bH埋于低介电介质中;(7) 电子转移即使不是电荷分离的唯一贡献者也是主要贡献者;(8) Qz和Qc位于膜介电分布的两侧。