Suppr超能文献

基于剂量梯度的三维适形放疗计划射束权重选择算法

Dose gradient based algorithm for beam weights selection in 3D-CRT plans.

作者信息

Giżyńska Marta Krystyna, Kukołowicz Paweł F

机构信息

Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland.

Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland.

出版信息

Rep Pract Oncol Radiother. 2014 May 13;19(Suppl):S9-S12. doi: 10.1016/j.rpor.2014.03.002. eCollection 2014 May.

Abstract

AIM

In this work we test the usage of dose gradient based algorithm for the selection of beam weights in 3D-CRT plans for different cancer locations. Our algorithm is easy to implement for three fields technique with wedges defined by planner.

BACKGROUND

3D-CRT is usually realized with forward planning which is quite time consuming. Several authors published a few methods of beams weights optimization applicable to the 3D-CRT.

MATERIALS AND METHODS

Optimization is based on an assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Method was tested for 120 patients, treated in our clinic in 2011-2012, with different cancer locations. For each patient, three fields conformal plan (6 MV and 15 MV X-ray) with the same geometry as proposed by experienced planners was prepared. We compared dose distributions achieved with the proposed method and those prepared by experienced planners. The homogeneity of dose distributions was compared in terms of STD and near minimum and near maximum doses in the PTV.

RESULTS

Mean difference of STD obtained by the proposed algorithm and by planners was 0.1%: 0.1% for prostate cancer, 0.3% for lung cancer, -0.1% for esophagus cancer, 0.1% for rectum cancer, -0.1% for gynecology cancer, -0.1% for stomach cancer.

CONCLUSIONS

Applying the proposed algorithm leads to obtain the similar dose distribution homogeneity in the PTV as these achieved by planners and therefore can serve as a support in creating 3D-CRT plans. It is also simple to use and can significantly speed up the treatment planning process.

摘要

目的

在本研究中,我们测试了基于剂量梯度的算法在不同癌症部位的三维适形放疗(3D - CRT)计划中选择射束权重的应用。我们的算法对于由计划者定义楔形板的三野技术而言易于实现。

背景

3D - CRT通常通过正向计划来实现,这相当耗时。几位作者发表了一些适用于3D - CRT的射束权重优化方法。

材料与方法

优化基于这样一种假设,即如果国际辐射单位与测量委员会(ICRU)点处的剂量梯度等于零,则可实现最佳计划。该方法针对2011 - 2012年在我们诊所接受治疗的120例不同癌症部位的患者进行了测试。对于每位患者,准备了具有与经验丰富的计划者所提议相同几何形状的三野适形计划(6兆伏和15兆伏X射线)。我们比较了用所提议方法获得的剂量分布与经验丰富的计划者所制定的剂量分布。在PTV中,根据标准差以及接近最小和接近最大剂量来比较剂量分布的均匀性。

结果

所提议算法与计划者获得的标准差的平均差异为0.1%:前列腺癌为0.1%,肺癌为0.3%,食管癌为 - 0.1%,直肠癌为0.1%,妇科癌症为 - 0.1%,胃癌为 - 0.1%。

结论

应用所提议的算法可在PTV中获得与计划者所实现的相似的剂量分布均匀性,因此可作为创建3D - CRT计划的一种辅助手段。它使用也很简单,并且可以显著加快治疗计划过程。

相似文献

1
Dose gradient based algorithm for beam weights selection in 3D-CRT plans.基于剂量梯度的三维适形放疗计划射束权重选择算法
Rep Pract Oncol Radiother. 2014 May 13;19(Suppl):S9-S12. doi: 10.1016/j.rpor.2014.03.002. eCollection 2014 May.
8
The optimisation of wedge filters in radiotherapy of the prostate.
Radiother Oncol. 1995 Dec;37(3):209-20. doi: 10.1016/0167-8140(95)01650-3.

引用本文的文献

1
The next generation of medical physicists.下一代医学物理学家。
Rep Pract Oncol Radiother. 2014 Mar 5;19(Suppl):S1-S2. doi: 10.1016/j.rpor.2014.04.010. eCollection 2014 May.

本文引用的文献

1
Comparison of two algorithms for determining beam weights and wedge filters.
J Appl Clin Med Phys. 2002 Summer;3(3):190-9. doi: 10.1120/jacmp.v3i3.2562.
2
Selecting beam weight and wedge filter on the basis of dose gradient analysis.
Med Phys. 2000 Aug;27(8):1746-52. doi: 10.1118/1.1286591.
3
Clinical implementation of wedge filter optimization in three-dimensional radiotherapy treatment planning.
Radiother Oncol. 1999 Dec;53(3):257-64. doi: 10.1016/s0167-8140(99)00142-5.
4
A three-dimensional algorithm for optimizing beam weights and wedge filters.
Med Phys. 1998 Oct;25(10):1858-65. doi: 10.1118/1.598375.
6
The optimisation of wedge filters in radiotherapy of the prostate.
Radiother Oncol. 1995 Dec;37(3):209-20. doi: 10.1016/0167-8140(95)01650-3.
7
A mathematical basis for selection of wedge angle and orientation.
Med Phys. 1993 Jul-Aug;20(4):1211-8. doi: 10.1118/1.596972.
9
Dosimetric precision requirements in radiation therapy.
Acta Radiol Oncol. 1984;23(5):379-91. doi: 10.3109/02841868409136037.
10
Semi-automated radiotherapy treatment planning with a mathematical model to satisfy treatment goals.
Int J Radiat Oncol Biol Phys. 1989 Jan;16(1):271-6. doi: 10.1016/0360-3016(89)90042-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验