Suppr超能文献

前列腺素E2受体亚型1(EP1)通过调节细胞能量代谢来调控间充质基质细胞的成骨分化。

PGE2 Receptor Subtype 1 (EP1) Regulates Mesenchymal Stromal Cell Osteogenic Differentiation by Modulating Cellular Energy Metabolism.

作者信息

Feigenson Marina, Eliseev Roman A, Jonason Jennifer H, Mills Bradley N, O'Keefe Regis J

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620.

Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620.

出版信息

J Cell Biochem. 2017 Dec;118(12):4383-4393. doi: 10.1002/jcb.26092. Epub 2017 May 31.

Abstract

Mesenchymal stromal cells (MSCs) are multipotent progenitors capable of differentiation into osteoblasts and can potentially serve as a source for cell-based therapies for bone repair. Many factors have been shown to regulate MSC differentiation into the osteogenic lineage such as the Cyclooxygenase-2 (COX2)/Prostaglandin E2 (PGE2) signaling pathway that is critical for bone repair. PGE2 binds four different receptors EP1-4. While most studies focus on the role PGE2 receptors EP2 and EP4 in MSC differentiation, our study focuses on the less studied, receptor subtype 1 (EP1) in MSC function. Recent work from our laboratory showed that EP1 mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation, suggesting that EP1 is a negative regulator of bone formation. In this study, the regulation of MSC osteogenic differentiation by EP1 receptor was investigated using EP1 genetic deletion in EP1 mice. The data suggest that EP1 receptor functions to maintain MSCs in an undifferentiated state. Loss of the EP1 receptor changes MSC characteristics and permits stem cells to undergo more rapid osteogenic differentiation. Notably, our studies suggest that EP1 receptor regulates MSC differentiation by modulating MSC bioenergetics, preventing the shift to mitochondrial oxidative phosphorylation by maintaining high Hif1α activity. Loss of EP1 results in inactivation of Hif1α, increased oxygen consumption rate and thus increased osteoblast differentiation. J. Cell. Biochem. 118: 4383-4393, 2017. © 2017 Wiley Periodicals, Inc.

摘要

间充质基质细胞(MSCs)是多能祖细胞,能够分化为成骨细胞,并有可能作为骨修复细胞疗法的来源。许多因素已被证明可调节MSCs向成骨谱系的分化,如环氧化酶-2(COX2)/前列腺素E2(PGE2)信号通路,该通路对骨修复至关重要。PGE2与四种不同的受体EP1-4结合。虽然大多数研究集中在PGE2受体EP2和EP4在MSCs分化中的作用,但我们的研究聚焦于研究较少的受体亚型1(EP1)在MSCs功能中的作用。我们实验室最近的研究表明,EP1基因敲除小鼠的骨折愈合增强、皮质骨更强、小梁骨体积更高且体内骨形成增加,这表明EP1是骨形成的负调节因子。在本研究中,利用EP1基因敲除小鼠研究了EP1受体对MSCs成骨分化的调节作用。数据表明,EP1受体的功能是使MSCs维持在未分化状态。EP1受体的缺失改变了MSCs的特性,使干细胞能够更快地进行成骨分化。值得注意的是,我们的研究表明,EP1受体通过调节MSCs的生物能量学来调节MSCs的分化,通过维持高Hif1α活性来防止向线粒体氧化磷酸化的转变。EP1的缺失导致Hif1α失活,耗氧率增加,从而增加成骨细胞分化。《细胞生物化学杂志》118: 4383 - 4393,2017年。© 2017威利期刊公司。

相似文献

2
Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair.
Ann Biomed Eng. 2020 Mar;48(3):927-939. doi: 10.1007/s10439-019-02264-7. Epub 2019 Apr 12.
3
EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair.
J Bone Miner Res. 2011 Apr;26(4):792-802. doi: 10.1002/jbmr.272.
4
Prostaglandin E2 impairs osteogenic and facilitates adipogenic differentiation of human bone marrow stromal cells.
Prostaglandins Leukot Essent Fatty Acids. 2015 Mar;94:91-8. doi: 10.1016/j.plefa.2014.11.008. Epub 2014 Dec 1.
6
Prostaglandin E2 EP1 receptor enhances TGF-β1-induced mesangial cell injury.
Int J Mol Med. 2015 Jan;35(1):285-93. doi: 10.3892/ijmm.2014.1979. Epub 2014 Oct 24.
7
Skin-Derived Mesenchymal Stem Cells Alleviate Atherosclerosis via Modulating Macrophage Function.
Stem Cells Transl Med. 2015 Nov;4(11):1294-301. doi: 10.5966/sctm.2015-0020. Epub 2015 Sep 23.
8
SC-19220, antagonist of prostaglandin E2 receptor EP1, inhibits osteoclastogenesis by RANKL.
J Bone Miner Res. 2005 Jan;20(1):15-22. doi: 10.1359/JBMR.041011. Epub 2004 Oct 18.

引用本文的文献

1
The function of GPCRs in different bone cells.
Int J Biol Sci. 2025 Jul 24;21(11):4736-4761. doi: 10.7150/ijbs.113585. eCollection 2025.
6
Mesenchymal stem cell-derived small extracellular vesicles alleviate the immunometabolic dysfunction in murine septic encephalopathy.
iScience. 2024 Jul 25;27(8):110573. doi: 10.1016/j.isci.2024.110573. eCollection 2024 Aug 16.
7
Peak Bone Mass Formation: Modern View of the Problem.
Biomedicines. 2023 Nov 6;11(11):2982. doi: 10.3390/biomedicines11112982.
8
Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging.
Curr Osteoporos Rep. 2023 Oct;21(5):540-551. doi: 10.1007/s11914-023-00816-4. Epub 2023 Aug 5.
9
Identification of key immune genes of osteoporosis based on bioinformatics and machine learning.
Front Endocrinol (Lausanne). 2023 Jun 7;14:1118886. doi: 10.3389/fendo.2023.1118886. eCollection 2023.

本文引用的文献

1
Cyclophilin D Knock-Out Mice Show Enhanced Resistance to Osteoporosis and to Metabolic Changes Observed in Aging Bone.
PLoS One. 2016 May 16;11(5):e0155709. doi: 10.1371/journal.pone.0155709. eCollection 2016.
2
Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.
Biomaterials. 2015 Jun;54:126-35. doi: 10.1016/j.biomaterials.2015.03.018. Epub 2015 Apr 2.
5
Prostaglandin E2 regulates liver versus pancreas cell-fate decisions and endodermal outgrowth.
Dev Cell. 2014 Feb 24;28(4):423-37. doi: 10.1016/j.devcel.2014.01.006. Epub 2014 Feb 13.
7
Mitochondrial regulation in pluripotent stem cells.
Cell Metab. 2013 Sep 3;18(3):325-32. doi: 10.1016/j.cmet.2013.06.005. Epub 2013 Jul 11.
8
WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation.
Cell Metab. 2013 May 7;17(5):745-55. doi: 10.1016/j.cmet.2013.03.017. Epub 2013 Apr 25.
10
Metabolic plasticity in stem cell homeostasis and differentiation.
Cell Stem Cell. 2012 Nov 2;11(5):596-606. doi: 10.1016/j.stem.2012.10.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验