Iyama Yuji, Nakaura Takeshi, Oda Seitaro, Kidoh Masafumi, Utsunomiya Daisuke, Yoshida Morikatsu, Yuki Hideaki, Hirata Kenichiro, Funama Yoshinori, Harada Kazunori, Awai Kazuo, Hirai Toshinori, Yamashita Yasuyuki
From the *Diagnostic Radiology, Amakusa Medical Center, Kameba 854-1, Amakusa, Kumamoto 863-0046, Japan; †Department of Diagnostic Radiology, Graduate School of Medical Sciences, and ‡Faculty of Life Sciences, Department of Medical Physics, Kumamoto University, Honjo 1-1-1, Kumamoto, Kumamoto 860-8556, Japan; §Department of Surgery, Amakusa Medical Center, Kameba 854-1, Amakusa, Kumamoto 863-0046, Japan; ∥Department of Diagnostic Radiology, Graduate School of Medical Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minamiku, Hiroshima, Hiroshima 860-8556, Japan; and ¶Department of Diagnostic Radiology, Graduate School of Medical Sciences, Miyazaki University, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
J Comput Assist Tomogr. 2017 Nov/Dec;41(6):884-890. doi: 10.1097/RCT.0000000000000626.
The objective of this study is to evaluate the usefulness of iterative model reconstruction designed for brain computed tomography (CT) (IMR-Neuro) for the diagnosis of acute ischemic stroke.
This retrospective study included 20 patients with acute middle cerebral artery infarction who have undergone brain CT and 20 nonstroke patients (control). We reconstructed axial images with filtered back projection (FBP) and IMR-Neuro (slice thickness, 1 and 5 mm). We compared the CT number of the infarcted area, the image noise, contrast, and the contrast to noise ratio of the infarcted and the noninfarcted areas between the different reconstruction methods. We compared the performance of 10 radiologists in the detection of parenchymal hypoattenuation between 2 techniques using the receiver operating characteristic (ROC) techniques with the jackknife method.
The image noise was significantly lower with IMR-Neuro [5 mm: 2.5 Hounsfield units (HU) ± 0.5, 1 mm: 3.9 HU ± 0.5] than with FBP (5 mm: 4.9 HU ± 0.5, 1 mm: 10.1 HU ± 1.4) (P < 0.01). The contrast to noise ratio was significantly greater with IMR-Neuro (5 mm: 2.6 ± 2.1, 1 mm: 1.6 ± 1.3) than with FBP (5 mm: 1.2 ± 1.0; 1 mm: 0.6 ± 0.5) (P < 0.01). The value of the average area under the receiver operating curve was significantly higher with IMR-Neuro than FBP (5 mm: 0.79 vs 0.74, P = 0.04; 1 mm: 0.76 vs 0.69, P = 0.04).
Compared with FBP, IMR-Neuro improves the image quality and the performance for the detection of parenchymal hypoattenuation with acute ischemic stroke.
本研究的目的是评估用于脑部计算机断层扫描(CT)的迭代模型重建(IMR-Neuro)在急性缺血性卒中诊断中的效用。
这项回顾性研究纳入了20例接受脑部CT检查的急性大脑中动脉梗死患者和20例非卒中患者(对照组)。我们使用滤波反投影(FBP)和IMR-Neuro(层厚分别为1和5毫米)重建了轴向图像。我们比较了不同重建方法之间梗死区域的CT值、图像噪声、对比度以及梗死区域与非梗死区域的对比度噪声比。我们使用留一法通过接受者操作特征(ROC)技术比较了10位放射科医生在两种技术下检测实质低密度的性能。
IMR-Neuro的图像噪声(5毫米:2.5亨氏单位(HU)±0.5,1毫米:3.9 HU±0.5)显著低于FBP(5毫米:4.9 HU±0.5,1毫米:10.1 HU±1.4)(P<0.01)。IMR-Neuro的对比度噪声比(5毫米:2.6±2.1,1毫米:1.6±1.3)显著高于FBP(5毫米:1.2±1.0;1毫米:0.6±0.5)(P<0.01)。IMR-Neuro的接受者操作曲线下平均面积值显著高于FBP(5毫米:0.79对0.74,P = 0.04;1毫米:0.76对0.69,P = 0.04)。
与FBP相比,IMR-Neuro改善了图像质量以及检测急性缺血性卒中实质低密度的性能。