Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Sci Rep. 2021 Nov 15;11(1):22271. doi: 10.1038/s41598-021-01162-0.
Non-contrast cerebral computed tomography (CT) is frequently performed as a first-line diagnostic approach in patients with suspected ischemic stroke. The purpose of this study was to evaluate the performance of hybrid and model-based iterative image reconstruction for standard-dose (SD) and low-dose (LD) non-contrast cerebral imaging by multi-detector CT (MDCT). We retrospectively analyzed 131 patients with suspected ischemic stroke (mean age: 74.2 ± 14.3 years, 67 females) who underwent initial MDCT with a SD protocol (300 mAs) as well as follow-up MDCT after a maximum of 10 days with a LD protocol (200 mAs). Ischemic demarcation was detected in 26 patients for initial and in 64 patients for follow-up imaging, with diffusion-weighted magnetic resonance imaging (MRI) confirming ischemia in all of those patients. The non-contrast cerebral MDCT images were reconstructed using hybrid (Philips "iDose4") and model-based iterative (Philips "IMR3") reconstruction algorithms. Two readers assessed overall image quality, anatomic detail, differentiation of gray matter (GM)/white matter (WM), and conspicuity of ischemic demarcation, if any. Quantitative assessment included signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations for WM, GM, and demarcated areas. Ischemic demarcation was detected in all MDCT images of affected patients by both readers, irrespective of the reconstruction method used. For LD imaging, anatomic detail and GM/WM differentiation was significantly better when using the model-based iterative compared to the hybrid reconstruction method. Furthermore, CNR of GM/WM as well as the SNR of WM and GM of healthy brain tissue were significantly higher for LD images with model-based iterative reconstruction when compared to SD or LD images reconstructed with the hybrid algorithm. For patients with ischemic demarcation, there was a significant difference between images using hybrid versus model-based iterative reconstruction for CNR of ischemic/contralateral unaffected areas (mean ± standard deviation: SD_IMR: 4.4 ± 3.1, SD_iDose: 3.5 ± 2.3, P < 0.0001; LD_IMR: 4.6 ± 2.9, LD_iDose: 3.2 ± 2.1, P < 0.0001). In conclusion, model-based iterative reconstruction provides higher CNR and SNR without significant loss of image quality for non-enhanced cerebral MDCT.
非对比性脑部计算机断层扫描(CT)通常作为疑似缺血性脑卒中患者的一线诊断方法。本研究旨在评估混合和基于模型的迭代图像重建技术在多探测器 CT(MDCT)上对标准剂量(SD)和低剂量(LD)非对比性脑部成像的性能。我们回顾性分析了 131 例疑似缺血性脑卒中患者(平均年龄:74.2±14.3 岁,女性 67 例)的资料,这些患者均接受了初始 MDCT 检查,使用 SD 方案(300 mAs),最多 10 天后进行了后续 MDCT 检查,使用 LD 方案(200 mAs)。26 例患者在初始成像中发现了缺血性边界,64 例患者在随访成像中发现了缺血性边界,所有这些患者的弥散加权磁共振成像(MRI)均证实了缺血。非对比性脑部 MDCT 图像分别使用混合(飞利浦“iDose4”)和基于模型的迭代(飞利浦“IMR3”)重建算法进行重建。两位读者评估了整体图像质量、解剖细节、灰质(GM)/白质(WM)的区分以及任何缺血边界的显影。定量评估包括对 WM、GM 和标记区域的信噪比(SNR)和对比噪声比(CNR)的计算。两位读者均在所有受影响患者的 MDCT 图像中检测到了缺血边界,而与所使用的重建方法无关。对于 LD 成像,与混合重建方法相比,基于模型的迭代重建在解剖细节和 GM/WM 区分方面表现更好。此外,与使用混合算法重建的 SD 或 LD 图像相比,基于模型的迭代重建的 GM/WM 的 CNR 以及健康脑组织的 WM 和 GM 的 SNR 均显著更高。对于有缺血边界的患者,在使用混合算法和基于模型的迭代算法重建的图像之间,在缺血/对侧未受影响区域的 CNR 方面存在显著差异(均值±标准差:SD_IMR:4.4±3.1,SD_iDose:3.5±2.3,P<0.0001;LD_IMR:4.6±2.9,LD_iDose:3.2±2.1,P<0.0001)。总之,基于模型的迭代重建为非增强性脑部 MDCT 提供了更高的 CNR 和 SNR,而不会显著降低图像质量。