Suppr超能文献

用于儿科药物评估中成人临床试验信息贝叶斯推断的统计建模。

Statistical modeling for Bayesian extrapolation of adult clinical trial information in pediatric drug evaluation.

作者信息

Gamalo-Siebers Margaret, Savic Jasmina, Basu Cynthia, Zhao Xin, Gopalakrishnan Mathangi, Gao Aijun, Song Guochen, Baygani Simin, Thompson Laura, Xia H Amy, Price Karen, Tiwari Ram, Carlin Bradley P

机构信息

Advanced Analytics, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, 46285, IN, USA.

JS Regulatory, Aachen, Germany.

出版信息

Pharm Stat. 2017 Jul;16(4):232-249. doi: 10.1002/pst.1807. Epub 2017 Apr 27.

Abstract

Children represent a large underserved population of "therapeutic orphans," as an estimated 80% of children are treated off-label. However, pediatric drug development often faces substantial challenges, including economic, logistical, technical, and ethical barriers, among others. Among many efforts trying to remove these barriers, increased recent attention has been paid to extrapolation; that is, the leveraging of available data from adults or older age groups to draw conclusions for the pediatric population. The Bayesian statistical paradigm is natural in this setting, as it permits the combining (or "borrowing") of information across disparate sources, such as the adult and pediatric data. In this paper, authored by the pediatric subteam of the Drug Information Association Bayesian Scientific Working Group and Adaptive Design Working Group, we develop, illustrate, and provide suggestions on Bayesian statistical methods that could be used to design improved pediatric development programs that use all available information in the most efficient manner. A variety of relevant Bayesian approaches are described, several of which are illustrated through 2 case studies: extrapolating adult efficacy data to expand the labeling for Remicade to include pediatric ulcerative colitis and extrapolating adult exposure-response information for antiepileptic drugs to pediatrics.

摘要

儿童是大量未得到充分治疗的“治疗孤儿”群体,据估计80%的儿童接受的是超说明书用药治疗。然而,儿科药物研发常常面临诸多重大挑战,其中包括经济、后勤、技术和伦理等方面的障碍。在诸多试图消除这些障碍的努力中,近来人们越来越关注外推法;也就是说,利用来自成人或年龄较大群体的现有数据来推断儿科人群的情况。贝叶斯统计范式在这种情况下很自然,因为它允许整合(或“借用”)来自不同来源的信息,比如成人和儿科数据。在本文中,由药物信息协会贝叶斯科学工作组和适应性设计工作组的儿科子团队撰写,我们开发、阐述并就贝叶斯统计方法提出建议,这些方法可用于设计改进的儿科研发项目,以便以最有效的方式利用所有可用信息。文中描述了多种相关的贝叶斯方法,其中几种方法通过两个案例研究进行了说明:外推成人疗效数据以扩大类克的标签范围,使其包括儿科溃疡性结肠炎适应症;以及将成人抗癫痫药物的暴露-反应信息外推至儿科。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验