Suppr超能文献

美洲榆(Ulmus americana Planch)受甲虫(Scolytus multistriatus)取食时的植物信号。

Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).

作者信息

Saremba Brett M, Tymm Fiona J M, Baethke Kathy, Rheault Mark R, Sherif Sherif M, Saxena Praveen K, Murch Susan J

机构信息

a Biology, University of British Columbia , Kelowna , British Columbia , Canada.

b Chemistry, University of British Columbia , Kelowna , British Columbia , Canada.

出版信息

Plant Signal Behav. 2017 May 4;12(5):e1296997. doi: 10.1080/15592324.2017.1296997. Epub 2017 Apr 27.

Abstract

American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.

摘要

美国榆树因荷兰榆树病的爆发而遭到重创,该病由源自亚洲并于20世纪初传入的新榆枯萎病菌(Ophiostoma novo-ulmi Brasier)引起。尽管经过了数十年的研究,但某些树木的具体发病机制和抗病性仍未得到充分了解。这种真菌在其扩散和取食过程中,通过几种小蠹属的树皮甲虫传播。我们的目标是了解在没有真菌的情况下榆树对甲虫取食的反应,以确定潜在的抗性机制。从野外捕获的甲虫建立了一个多纹小蠹种群,并将甲虫与易感或抗性美国榆树品种在可控环境舱中共同培养。甲虫钻入幼榆嫩枝的腋生分生组织。树木通过一系列植物生长调节化合物、褪黑素、血清素和茉莉酸浓度的峰值来应对甲虫的侵害。褪黑素和血清素的峰值比静息水平高出7000倍。茉莉酸的峰值比静息水平高出约10倍,观察到一个非常大的峰值。在易感和抗性榆树之间发现了差异,这为植物防御提供了新的认识。

相似文献

1
Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch).
Plant Signal Behav. 2017 May 4;12(5):e1296997. doi: 10.1080/15592324.2017.1296997. Epub 2017 Apr 27.
2
Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease?
Naturwissenschaften. 2010 Feb;97(2):219-27. doi: 10.1007/s00114-009-0630-x. Epub 2009 Dec 5.
3
Association of Ophiostoma novo-ulmi with Scolytus schevyrewi (Scolytidae) in Colorado.
Plant Dis. 2007 Mar;91(3):245-247. doi: 10.1094/PDIS-91-3-0245.
4
The pathogen causing Dutch elm disease makes host trees attract insect vectors.
Proc Biol Sci. 2005 Dec 7;272(1580):2499-503. doi: 10.1098/rspb.2005.3202.
5
Trap trees for elm bark beetles : Augmentation with pheromone baits and chlorpyrifos.
J Chem Ecol. 1985 Jan;11(1):11-20. doi: 10.1007/BF00987599.
6
Anatomical and nutritional factors associated with susceptibility of elms (Ulmus spp.) to the elm leaf beetle (Coleoptera: Chrysomelidae).
J Econ Entomol. 2008 Jun;101(3):944-54. doi: 10.1603/0022-0493(2008)101[944:aanfaw]2.0.co;2.
8
Geosmithia-Ophiostoma: a New Fungus-Fungus Association.
Microb Ecol. 2018 Apr;75(3):632-646. doi: 10.1007/s00248-017-1062-3. Epub 2017 Sep 5.
9
An elm EST database for identifying leaf beetle egg-induced defense genes.
BMC Genomics. 2012 Jun 15;13:242. doi: 10.1186/1471-2164-13-242.

引用本文的文献

1
HormonomicsDB: a novel workflow for the untargeted analysis of plant growth regulators and hormones.
F1000Res. 2024 Apr 8;11:1191. doi: 10.12688/f1000research.124194.2. eCollection 2022.
2
Melatonin: The Multifaceted Molecule in Plant Growth and Defense.
Int J Mol Sci. 2024 Jun 20;25(12):6799. doi: 10.3390/ijms25126799.
3
Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future.
Plant Signal Behav. 2024 Dec 31;19(1):2366545. doi: 10.1080/15592324.2024.2366545. Epub 2024 Jun 20.
4
Mammalian Melatonin Agonist Pharmaceuticals Stimulate Rhomboid Proteins in Plants.
Biomolecules. 2022 Jun 24;12(7):882. doi: 10.3390/biom12070882.
5
Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress.
Plant Mol Biol. 2022 Jul;109(4-5):385-399. doi: 10.1007/s11103-021-01202-3. Epub 2021 Nov 16.
6
A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature.
Front Plant Sci. 2021 Jun 18;12:683047. doi: 10.3389/fpls.2021.683047. eCollection 2021.
7
Metabolomics and hormonomics to crack the code of filbert growth.
Metabolomics. 2020 Apr 25;16(5):62. doi: 10.1007/s11306-020-01684-0.
8
Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.).
PLoS One. 2019 Oct 17;14(10):e0223878. doi: 10.1371/journal.pone.0223878. eCollection 2019.
9
A virus-induced gene-silencing system for functional genetics in a betalainic species, (Amaranthaceae).
Appl Plant Sci. 2019 Feb 7;7(2):e01221. doi: 10.1002/aps3.1221. eCollection 2019 Feb.

本文引用的文献

1
Melatonin in plant signalling and behaviour.
Funct Plant Biol. 2018 Jan;45(2):58-69. doi: 10.1071/FP16384.
2
ROS Regulation of Polar Growth in Plant Cells.
Plant Physiol. 2016 Jul;171(3):1593-605. doi: 10.1104/pp.16.00191. Epub 2016 May 4.
3
The Ubiquitin System and Jasmonate Signaling.
Plants (Basel). 2016 Jan 9;5(1):6. doi: 10.3390/plants5010006.
4
How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.
Plant Mol Biol. 2016 Aug;91(6):727-40. doi: 10.1007/s11103-016-0481-8. Epub 2016 Apr 19.
7
Organ-specific regulation of growth-defense tradeoffs by plants.
Curr Opin Plant Biol. 2016 Feb;29:129-37. doi: 10.1016/j.pbi.2015.12.005. Epub 2016 Jan 21.
8
A new balancing act: The many roles of melatonin and serotonin in plant growth and development.
Plant Signal Behav. 2015;10(11):e1096469. doi: 10.1080/15592324.2015.1096469.
10
Novel players fine-tune plant trade-offs.
Essays Biochem. 2015;58:83-100. doi: 10.1042/bse0580083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验