ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
Plant Mol Biol. 2022 Jul;109(4-5):385-399. doi: 10.1007/s11103-021-01202-3. Epub 2021 Nov 16.
Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.
褪黑素通过诱导防御反应和病原体衰减,在减轻植物生物胁迫方面发挥着至关重要的作用。利用这种植物保护剂的信号转导和相关机制的现有知识,对于可持续的植物病害管理将是非常宝贵的。植物中的生物胁迫涉及各种感觉和信号分子的复杂调控网络。在这种情况下,多功能、普遍存在的信号分子褪黑素在植物减轻生物胁迫方面表现出调节作用。本综述概述了与褪黑素介导的防御信号网络激活有关的现有知识,该网络导致感染植物表现出抗性或耐受性表型。还讨论了褪黑素诱导活性氧(ROS)或活性氮(RNS)清除的信号网络的基本原理,包括通过酶和非酶抗氧化剂清除。越来越多的证据表明,褪黑素在激活与防御相关的基因和热休克蛋白方面起丝裂原活化蛋白激酶上游的作用,这些基因和热休克蛋白为植物提供了抵御病原体攻击的免疫力。此外,褪黑素直接应用于毒力真菌和细菌,导致孢子形态破坏、细胞超微结构不稳定、生物膜形成减少和死亡率增加,从而减轻褪黑素处理植物上的疾病症状。转录组分析表明,褪黑素处理的病原体中致病性基因、代谢相关基因下调,杀菌剂敏感性基因上调。褪黑素通过与水杨酸(SA)、茉莉酸(JA)的交叉对话激活介导的系统获得性抗性(SAR),对于病毒病管理至关重要。高内源性褪黑素浓度也与参与病原体相关分子模式(PAMP)触发免疫(PTI)和效应物触发免疫(ETI)的基因上调相关。本综述强调了褪黑素在直接抑制病原体繁殖的多种功能,以及积极参与介导氧化爆发和模拟 PTI、ETI 和 SAR 反应。涉及褪黑素介导的生物胁迫耐受性的激素交叉对话通过防御信号网络表明其在可持续植物保护系统中的适用性。