Zhang Peng, Rausch Cathia, Hastert Florian D, Boneva Boyana, Filatova Alina, Patil Sujit J, Nuber Ulrike A, Gao Yu, Zhao Xinyu, Cardoso M Cristina
Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
Stem Cell and Developmental Biology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
Nucleic Acids Res. 2017 Jul 7;45(12):7118-7136. doi: 10.1093/nar/gkx281.
Cytosine modifications diversify and structure the genome thereby controlling proper development and differentiation. Here, we focus on the interplay of the 5-methylcytosine reader Mbd1 and modifier Tet1 by analyzing their dynamic subcellular localization and the formation of the Tet oxidation product 5-hydroxymethylcytosine in mammalian cells. Our results demonstrate that Mbd1 enhances Tet1-mediated 5-methylcytosine oxidation. We show that this is due to enhancing the localization of Tet1, but not of Tet2 and Tet3 at heterochromatic DNA. We find that the recruitment of Tet1 and concomitantly its catalytic activity eventually leads to the displacement of Mbd1 from methylated DNA. Finally, we demonstrate that increased Tet1 heterochromatin localization and 5-methylcytosine oxidation are dependent on the CXXC3 domain of Mbd1, which recognizes unmethylated CpG dinucleotides. The Mbd1 CXXC3 domain deletion isoform, which retains only binding to methylated CpGs, on the other hand, blocks Tet1-mediated 5-methylcytosine to 5-hydroxymethylcytosine conversion, indicating opposite biological effects of Mbd1 isoforms. Our study provides new insights on how cytosine modifications, their modifiers and readers cross-regulate themselves.
胞嘧啶修饰使基因组多样化并构建其结构,从而控制正常的发育和分化。在此,我们通过分析5-甲基胞嘧啶识别蛋白Mbd1和修饰蛋白Tet1在哺乳动物细胞中的动态亚细胞定位以及Tet氧化产物5-羟甲基胞嘧啶的形成,来聚焦它们之间的相互作用。我们的结果表明,Mbd1增强了Tet1介导的5-甲基胞嘧啶氧化。我们发现这是由于增强了Tet1在异染色质DNA上的定位,而不是Tet2和Tet3的定位。我们发现Tet1的募集及其催化活性最终导致Mbd1从甲基化DNA上位移。最后,我们证明Tet1在异染色质上定位增加以及5-甲基胞嘧啶氧化依赖于Mbd1的CXXC3结构域,该结构域识别未甲基化的CpG二核苷酸。另一方面,仅保留与甲基化CpG结合的Mbd1 CXXC3结构域缺失异构体,会阻断Tet1介导的5-甲基胞嘧啶向5-羟甲基胞嘧啶的转化,表明Mbd1异构体具有相反的生物学效应。我们的研究为胞嘧啶修饰、其修饰蛋白和识别蛋白如何相互交叉调节提供了新的见解。