Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich 81377, Germany.
Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet 17165 Stockholm, Sweden, Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet 17177 Stockholm, Sweden.
Nucleic Acids Res. 2022 Aug 26;50(15):8491-8511. doi: 10.1093/nar/gkac642.
DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear. Here, we use genome engineering and quantitative multi-omics approaches to dissect the precise catalytic vs. non-catalytic functions of TET1 in murine embryonic stem cells (mESCs). Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. In particular, we show that TET1 is critical for the establishment of H3K9me3 and H4K20me3 at endogenous retroviral elements (ERVs) and their silencing that is independent of its canonical role in DNA demethylation. Furthermore, we provide evidence that this repression of ERVs depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
DNA 甲基化(5-甲基胞嘧啶(5mC))对于哺乳动物的基因组稳定性和转录调控至关重要。十号十一号转位(TET)蛋白催化 5mC 氧化为 5-羟甲基胞嘧啶(5hmC)、5-甲酰胞嘧啶(5fC)和 5-羧基胞嘧啶(5caC)的发现,彻底改变了我们对 DNA 修饰复杂性和调控的认识。然而,TET1 的调控功能在多大程度上可以归因于其催化活性尚不清楚。在这里,我们使用基因组工程和定量多组学方法,在鼠胚胎干细胞(mESCs)中剖析 TET1 的精确催化与非催化功能。我们的研究确定 TET1 是多个染色质修饰复合物的必需相互作用枢纽,也是组蛋白修饰的全局调节剂。引人注目的是,我们发现大多数转录调控依赖于 TET1 的非催化功能。特别是,我们表明 TET1 对于内源性逆转录元件(ERVs)中 H3K9me3 和 H4K20me3 的建立及其沉默是至关重要的,而这与它在 DNA 去甲基化中的经典作用无关。此外,我们提供的证据表明,ERVs 的这种抑制依赖于 TET1 和 SIN3A 之间的相互作用。总之,我们证明了 TET1 的非催化功能对于 mESCs 中基因表达的调控和内源性逆转录病毒的沉默是至关重要的。