基于 3D 全卷积网络的 MRI 脑区自动分割:一项大规模研究

3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

机构信息

LIVIA Laboratory, École de technologie supérieure (ETS), Montreal, QC, Canada.

LIVIA Laboratory, École de technologie supérieure (ETS), Montreal, QC, Canada.

出版信息

Neuroimage. 2018 Apr 15;170:456-470. doi: 10.1016/j.neuroimage.2017.04.039. Epub 2017 Apr 24.

Abstract

This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data.

摘要

本研究探索了一种用于 MRI 下脑结构分割的三维全卷积神经网络(CNN)。由于在推理过程中需要计算和内存,因此通常避免使用 3D CNN 架构。我们通过使用小核来解决这个问题,从而允许使用更深的架构。我们通过将中间层的输出嵌入到最终预测中,进一步对局部和全局上下文进行建模,这鼓励了在不同尺度下提取的特征之间的一致性,并将细粒度信息直接嵌入到分割过程中。我们的模型在图形处理单元(GPU)上进行端到端的高效训练,利用全 CNN 的密集推理能力,在单个阶段进行训练。我们在两个公开可用的数据集上进行了全面的实验。首先,我们在 ISBR 数据集上展示了最先进的性能。然后,我们在 17 个不同站点(ABIDE 数据集)采集的 1112 个未注册的受试者数据集上进行了大规模的多站点评估,年龄范围从 7 岁到 64 岁,表明我们的方法对各种采集协议、人口统计学和临床因素具有鲁棒性。我们的方法产生的分割结果与基于标准图谱的方法高度一致,而运行时间仅为基于图谱方法的一小部分,并且避免了配准/归一化步骤。这使得它非常适合大规模的多站点神经影像学研究。据我们所知,我们的工作是首次在如此大规模和异构的数据上研究下脑结构分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索