文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用大规模训练的 3D 卷积神经网络进行丘脑自动分割:通过提高扫描仪间稳定性来提高检测丘脑体积减小的灵敏度。

Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.

机构信息

jung diagnostics GmbH, Hamburg, Germany.

Institute of Diagnostic and Interventional Neuroradiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

出版信息

Eur Radiol. 2023 Mar;33(3):1852-1861. doi: 10.1007/s00330-022-09170-y. Epub 2022 Oct 20.


DOI:10.1007/s00330-022-09170-y
PMID:36264314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9935653/
Abstract

OBJECTIVES: To develop an automatic method for accurate and robust thalamus segmentation in T1w-MRI for widespread clinical use without the need for strict harmonization of acquisition protocols and/or scanner-specific normal databases. METHODS: A three-dimensional convolutional neural network (3D-CNN) was trained on 1975 T1w volumes from 170 MRI scanners using thalamus masks generated with FSL-FIRST as ground truth. Accuracy was evaluated with 18 manually labeled expert masks. Intra- and inter-scanner test-retest stability were assessed with 477 T1w volumes of a single healthy subject scanned on 123 MRI scanners. The sensitivity of 3D-CNN-based volume estimates for the detection of thalamus atrophy was tested with 127 multiple sclerosis (MS) patients and a normal database comprising 4872 T1w volumes from 160 scanners. The 3D-CNN was compared with a publicly available 2D-CNN (FastSurfer) and FSL. RESULTS: The Dice similarity coefficient of the automatic thalamus segmentation with manual expert delineation was similar for all tested methods (3D-CNN and FastSurfer 0.86 ± 0.02, FSL 0.87 ± 0.02). The standard deviation of the single healthy subject's thalamus volume estimates was lowest with 3D-CNN for repeat scans on the same MRI scanner (0.08 mL, FastSurfer 0.09 mL, FSL 0.15 mL) and for repeat scans on different scanners (0.28 mL, FastSurfer 0.62 mL, FSL 0.63 mL). The proportion of MS patients with significantly reduced thalamus volume was highest for 3D-CNN (24%, FastSurfer 16%, FSL 11%). CONCLUSION: The novel 3D-CNN allows accurate thalamus segmentation, similar to state-of-the-art methods, with considerably improved robustness with respect to scanner-related variability of image characteristics. This might result in higher sensitivity for the detection of disease-related thalamus atrophy. KEY POINTS: • A three-dimensional convolutional neural network was trained for automatic segmentation of the thalamus with a heterogeneous sample of T1w-MRI from 1975 patients scanned on 170 different scanners. • The network provided high accuracy for thalamus segmentation with manual segmentation by experts as ground truth. • Inter-scanner variability of thalamus volume estimates across different MRI scanners was reduced by more than 50%, resulting in increased sensitivity for the detection of thalamus atrophy.

摘要

目的:开发一种自动方法,以便在不严格协调采集协议和/或扫描仪特定正常数据库的情况下,在广泛的临床应用中准确、稳健地对 T1w-MRI 中的丘脑进行分割。

方法:使用 FSL-FIRST 生成的丘脑掩模作为地面实况,在来自 170 台 MRI 扫描仪的 1975 个 T1w 容积上训练三维卷积神经网络(3D-CNN)。使用 18 个手动标记的专家掩模评估准确性。使用单个健康受试者的 477 个 T1w 容积评估扫描仪内和扫描仪间的测试-再测试稳定性,该受试者在 123 台 MRI 扫描仪上进行了扫描。使用 127 名多发性硬化症(MS)患者和包含来自 160 台扫描仪的 4872 个 T1w 容积的正常数据库测试基于 3D-CNN 的体积估计对丘脑萎缩的检测灵敏度。将 3D-CNN 与公开可用的 2D-CNN(FastSurfer)和 FSL 进行比较。

结果:与所有测试方法(3D-CNN 和 FastSurfer 0.86 ± 0.02,FSL 0.87 ± 0.02)相比,自动丘脑分割与手动专家勾画的 Dice 相似系数相似。同一 MRI 扫描仪上重复扫描时,单个健康受试者的丘脑体积估计的标准偏差最低(3D-CNN 为 0.08 mL,FastSurfer 为 0.09 mL,FSL 为 0.15 mL),在不同扫描仪上重复扫描时(3D-CNN 为 0.28 mL,FastSurfer 为 0.62 mL,FSL 为 0.63 mL)。3D-CNN 检测到的 MS 患者丘脑体积显著减少的比例最高(24%,FastSurfer 为 16%,FSL 为 11%)。

结论:新型 3D-CNN 可实现准确的丘脑分割,与最先进的方法相似,但对图像特征与扫描仪相关的可变性具有显著提高的稳健性。这可能导致对疾病相关的丘脑萎缩的检测灵敏度更高。

关键点: • 基于来自 1975 名患者的 T1w-MRI 的异质样本,使用三维卷积神经网络对丘脑进行自动分割,这些患者在 170 台不同的扫描仪上进行了扫描。 • 该网络提供了以专家手动分割作为地面实况的高精度丘脑分割。 • 通过减少超过 50%的跨不同 MRI 扫描仪的丘脑体积估计的扫描仪间可变性,提高了对丘脑萎缩的检测灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/d0d3bccfb946/330_2022_9170_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/559bd153b479/330_2022_9170_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/7e321d27ed7c/330_2022_9170_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/5a0f78dbd6cb/330_2022_9170_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/221f3eaff1ea/330_2022_9170_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/2587cbef031d/330_2022_9170_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/d0d3bccfb946/330_2022_9170_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/559bd153b479/330_2022_9170_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/7e321d27ed7c/330_2022_9170_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/5a0f78dbd6cb/330_2022_9170_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/221f3eaff1ea/330_2022_9170_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/2587cbef031d/330_2022_9170_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fa/9935653/d0d3bccfb946/330_2022_9170_Fig6_HTML.jpg

相似文献

[1]
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.

Eur Radiol. 2023-3

[2]
Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks.

Eur Radiol. 2022-4

[3]
Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks.

Neuroimage. 2018-10-6

[4]
Voxel-based morphometry in single subjects without a scanner-specific normal database using a convolutional neural network.

Eur Radiol. 2024-6

[5]
Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

Brain Struct Funct. 2024-6

[6]
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.

Neuroimage Clin. 2020

[7]
Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis.

Eur Radiol. 2018-9-21

[8]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

[9]
Reliability of brain atrophy measurements in multiple sclerosis using MRI: an assessment of six freely available software packages for cross-sectional analyses.

Neuroradiology. 2023-10

[10]
Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.

Neuroimage Clin. 2019-11-5

引用本文的文献

[1]
A Case for Automated Segmentation of MRI Data in Neurodegenerative Diseases: Type II GM1 Gangliosidosis.

NeuroSci. 2025-4-3

[2]
A Case for Automated Segmentation of MRI Data in Milder Neurodegenerative Diseases.

medRxiv. 2025-2-20

[3]
Advancing Thalamic Nuclei Segmentation: The Impact of Compressed Sensing on MRI Processing.

Hum Brain Mapp. 2024-12-15

[4]
Patients with relapsing-remitting multiple sclerosis show accelerated whole brain volume and thalamic volume loss early in disease.

Neuroradiology. 2025-1

[5]
Associations between the choroid plexus and tau in Alzheimer's disease using an active learning segmentation pipeline.

Fluids Barriers CNS. 2024-7-12

[6]
Exploring approaches to tackle cross-domain challenges in brain medical image segmentation: a systematic review.

Front Neurosci. 2024-6-14

[7]
BrainLossNet: a fast, accurate and robust method to estimate brain volume loss from longitudinal MRI.

Int J Comput Assist Radiol Surg. 2024-9

[8]
Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

Brain Struct Funct. 2024-6

[9]
Removing outliers from the normative database improves regional atrophy detection in single-subject voxel-based morphometry.

Neuroradiology. 2024-4

[10]
The Segmentation of Multiple Types of Uterine Lesions in Magnetic Resonance Images Using a Sequential Deep Learning Method with Image-Level Annotations.

J Imaging Inform Med. 2024-2

本文引用的文献

[1]
Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis.

J Neurol. 2021-12

[2]
Thalamic Injury and Cognition in Multiple Sclerosis.

Front Neurol. 2021-2-5

[3]
Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study.

Neuroimage Clin. 2021

[4]
Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.

Neuroimage Clin. 2020

[5]
Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort.

J Neurol. 2020-12

[6]
FastSurfer - A fast and accurate deep learning based neuroimaging pipeline.

Neuroimage. 2020-10-1

[7]
ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies.

Neuroimage. 2020-10-1

[8]
Joint inference on structural and diffusion MRI for sequence-adaptive Bayesian segmentation of thalamic nuclei with probabilistic atlases.

Inf Process Med Imaging. 2019-6

[9]
Automatic classification of dopamine transporter SPECT: deep convolutional neural networks can be trained to be robust with respect to variable image characteristics.

Eur J Nucl Med Mol Imaging. 2019-8-31

[10]
Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI.

Neuroimage. 2019-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索