Richert Sabine, Cremers Jonathan, Anderson Harry L, Timmel Christiane R
Centre for Advanced Electron Spin Resonance (CAESR) , University of Oxford , South Parks Road , Oxford , OX1 3QR , UK . Email:
Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford , OX1 3TA , UK.
Chem Sci. 2016 Dec 1;7(12):6952-6960. doi: 10.1039/c6sc01810f. Epub 2016 Aug 2.
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the molecular geometry as well as metal-ligand interactions in ten-membered porphyrin nanorings ( ) containing two copper and eight zinc centers. The presence of copper in the structures allows intramolecular interactions, including dipolar interactions between electron spins and hyperfine interactions to be quantified. Results obtained for samples bound to two molecular templates with four or five binding sites, respectively, are compared to those obtained for a sample of the porphyrin ring in the absence of any templates. It is shown that the observed lower binding affinity of the nitrogen ligand to copper as compared to zinc has a strong impact on the geometries of the respective template-bound structures. The interaction between the central copper atom and nitrogen ligands is weak, but pulsed EPR hyperfine techniques such as ENDOR and HYSCORE are very sensitive to this interaction. Upon binding of a nitrogen ligand to copper, the hyperfine couplings of the in-plane nitrogen atoms of the porphyrin core are reduced by about 3 MHz. In addition, the copper hyperfine couplings as well as the -factors are altered, as detected by continuous wave EPR. DFT calculations of the hyperfine coupling tensors support the assignment of the measured couplings to the nuclei within the structure and reproduce the experimentally observed trends. Finally, Double Electron Electron Resonance (DEER) is used to measure the distances between the copper centers in a range between 2.5 and 5 nm, revealing the preferred geometries of the template-bound nanorings.
电子顺磁共振(EPR)光谱已被用于研究含有两个铜中心和八个锌中心的十元卟啉纳米环( )中的分子几何结构以及金属 - 配体相互作用。结构中铜的存在使得分子内相互作用,包括电子自旋之间的偶极相互作用和超精细相互作用得以量化。分别将与具有四个或五个结合位点的两个分子模板结合的 样品所获得的结果,与在没有任何模板的情况下卟啉环样品所获得的结果进行比较。结果表明,与锌相比,观察到的氮配体与铜的结合亲和力较低,这对各自模板结合的 结构的几何形状有很大影响。中心铜原子与氮配体之间的相互作用较弱,但诸如电子核双共振(ENDOR)和高分辨超精细谱(HYSCORE)等脉冲EPR超精细技术对这种相互作用非常敏感。当氮配体与铜结合时,卟啉核心平面内氮原子的超精细耦合降低了约3兆赫兹。此外,通过连续波EPR检测到,铜的超精细耦合以及 因子发生了变化。超精细耦合张量的密度泛函理论(DFT)计算支持将测量的耦合分配给结构内的原子核,并重现了实验观察到的趋势。最后,双电子 - 电子共振(DEER)用于测量铜中心之间2.5至5纳米范围内的距离,揭示了模板结合纳米环的优选几何形状。