Singh Priya, Choudhury Susobhan, Singha Subhankar, Jun Yongwoong, Chakraborty Sandipan, Sengupta Jhimli, Das Ranjan, Ahn Kyo-Han, Pal Samir Kumar
Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India.
Phys Chem Chem Phys. 2017 May 17;19(19):12237-12245. doi: 10.1039/c6cp08804j.
Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.
考虑到生物重要大分子在分子识别中的功能,其表面的弛豫动力学非常重要。多年来的研究表明,荧光探针在生物分子表面和界面的溶剂化动力学解释了极性残基和相关水分子的弛豫动力学。然而,动力学的敏感性在很大程度上取决于探针的定位和暴露情况。对于非共价荧光探针,与生物界面上共价连接的探针相比,除了表面暴露外,在感兴趣区域的定位是一个额外的挑战。在这里,我们使用了一种合成的供体-受体型偶极荧光团,6-乙酰基-(2-((4-羟基环己基)(甲基)氨基)萘)(ACYMAN),来研究模型蛋白质-表面活性剂界面的溶剂化动力学。圆二色性(CD)研究表明,模型组蛋白H1与阴离子表面活性剂十二烷基硫酸钠(SDS)相互作用时发生了显著的结构重排,这在界面处探针的溶剂化动力学中得到了很好的证实。与SDS胶束表面相比,探针的偏振门控荧光各向异性清楚地揭示了探针在蛋白质-表面活性剂界面的定位。我们还将ACYMAN与其他溶剂化探针进行了比较,包括香豆素500(C500)和4-(二氰基亚甲基)-2-甲基-6-(对二甲氨基苯乙烯基)-4H-吡喃(DCM)。与ACYMAN相比,C500和DCM都无法探测模型蛋白质-表面活性剂界面的界面溶剂化动力学。虽然发现C500从蛋白质-表面活性剂界面离域,但DCM在界面(蛋白质-表面活性剂复合物)形成时变得不稳定。从这种新型探针获得的时间尺度也与其他飞秒分辨研究和分子动力学模拟进行了比较。