Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University , Wuhan, Hubei 430072, P. R. China.
National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610065, P. R. China.
Langmuir. 2017 May 9;33(18):4477-4489. doi: 10.1021/acs.langmuir.7b00191. Epub 2017 Apr 28.
Owing to the highly hydrophobic nature, fluoropolymer membranes usually suffer from serious fouling problem, and therefore largely limited their practical applications. Also, the development of environmentally benign and nonreleasing antifouling coatings onto the inert fluoropolymer membranes remains a great challenge and is of prime importance for various scientific interests and industrial applications. In the present work, a facile and effective approach for the construction of hierarchical fouling resistance surfaces onto the poly(vinylidene fluoride) (PVDF) membranes was developed. Graft copolymers of PVDF with poly(hyperbranched polyglycerol methacrylamide) side chains (PVDF-g-PHPGMA copolymers) were synthesized via reversible addition-fragmentation chain transfer (RAFT) graft copolymerization of pentafluorophenyl methacrylate (PFMA) with the ozone-preactivated PVDF, followed by activated ester-amine reaction of PPFMA chains with amino-terminated hyperbranched polyglycerol (HPG-NH). The copolymers could be simply processed into microfiltration (MF) membranes with surface-tethered PHPGMA side chains on the membrane and pore surfaces by nonsolvent induced phase inversion. Furthermore, the PVDF-g-PHPGMA-g-PSBMA membrane was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) of zwitterionic monomer, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) from the PVDF-g-PHPGMA membrane and pore surfaces. Arise from a synergistic effect of the dendritic architecture of PHPGMA branches and "superhydrophilic" nature of PSBMA brushes, the PVDF-g-PHPGMA-g-PSBMA membranes exhibit superior resistance to protein and bacteria adhesion with insignificant cytotoxicity effects, making the membranes potentially useful for water treatment and biomedical applications. One may find the present study a general and effective method for the fabrication of antifouling fluoropolymer membranes in a controllable and green manner.
由于高度的疏水性,氟聚合物膜通常会遭受严重的污染问题,因此在很大程度上限制了它们的实际应用。此外,在惰性氟聚合物膜上开发环保且无释放的抗污染涂层仍然是一个巨大的挑战,对于各种科学兴趣和工业应用都非常重要。在本工作中,开发了一种在聚偏氟乙烯(PVDF)膜上构建分级抗污染表面的简单有效方法。通过五氟苯甲基丙烯酸酯(PFMA)与臭氧预处理的 PVDF 的可逆加成-断裂链转移(RAFT)接枝聚合,合成了带有聚(超支化聚甘油甲基丙烯酰胺)侧链的 PVDF 接枝共聚物(PVDF-g-PHPGMA 共聚物),然后通过与端氨基超支化聚甘油(HPG-NH)的活性酯-胺反应。共聚物可以通过非溶剂诱导相转化简单地加工成具有表面接枝 PHPGMA 侧链的微滤(MF)膜和膜孔表面。此外,通过从 PVDF-g-PHPGMA 膜和孔表面引发的两性离子单体 N-(3-磺丙基)-N-(甲基丙烯酰氧基乙基)-N,N-二甲基铵甜菜碱(SBMA)的表面引发原子转移自由基聚合(SI-ATRP)制备了 PVDF-g-PHPGMA-g-PSBMA 膜。由于 PHPGMA 支链的树枝状结构和 PSBMA 刷的“超亲水”性质的协同作用,PVDF-g-PHPGMA-g-PSBMA 膜表现出对蛋白质和细菌附着的优异抗性,且具有轻微的细胞毒性作用,使膜在水处理和生物医学应用中具有潜在的用途。人们可能会发现本研究是一种通用且有效的可控绿色方法,用于制备抗污染氟聚合物膜。