Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstr. 7/B2, 91058 Erlangen, Germany.
Nano Lett. 2017 Jun 14;17(6):3341-3346. doi: 10.1021/acs.nanolett.6b04813. Epub 2017 May 9.
The possibility of using single molecule junctions as components of nanoelectronic devices has motivated intensive experimental and theoretical research on the underlying transport mechanism in these systems. In this Letter, we investigate from a theoretical perspective intramolecular proton transfer reactions as a mechanism for controlling the conductance state of graphene-based molecular junctions. Employing a methodology that combines first-principles electronic structure methods with transport approaches, we show that the proton transfer reaction proceeds via a stepwise mechanism, giving rise to several tautomers with different conductance states. The analysis reveals that the relative stability of the tautomers as well as the energy barrier for their interconversion can be controlled by means of an external electrostatic field, which provides a mechanism for switching the nanojunction.
作为纳米电子设备组件的单分子结的可能性,激发了人们对这些系统中基础输运机制的密集实验和理论研究。在这封信件中,我们从理论角度研究了质子转移反应作为控制基于石墨烯的分子结电导状态的机制。采用结合第一性原理电子结构方法和输运方法的方法,我们表明质子转移反应通过逐步机制进行,导致具有不同电导状态的几种互变异构体。分析表明,互变异构体的相对稳定性以及它们相互转化的能垒可以通过外部电场来控制,这为纳米结的开关提供了一种机制。