Sreelakshmi P A, Mahashaya Rahul, Leitherer Susanne, Rashid Umar, Hamill Joseph M, Nair Manivarna, Rajamalli Pachaiyappan, Kaliginedi Veerabhadrarao
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
Materials Research Centre, Indian Institute of Science, Bangalore 560012, India.
J Am Chem Soc. 2024 Dec 25;146(51):35242-35251. doi: 10.1021/jacs.4c12423. Epub 2024 Nov 4.
Mastering the control of external stimuli-induced chemical transformations with detailed insights into the mechanistic pathway is the key for developing efficient synthetic strategies and designing functional molecular systems. Enzymes, the most potent biological catalysts, efficiently utilize their built-in electric field to catalyze and control complex chemical reactions within the active site. Herein, we have demonstrated the interfacial electric field-induced prototropic tautomerization reaction in acylhydrazone entities by creating an enzymatic-like nanopocket within the atomically sharp gold electrodes using a mechanically controlled break junction (MCBJ) technique. In addition to that, the molecular system used here contains two coupled acylhydrazone reaction centers, hence demonstrating a cooperative stepwise electric field-induced reaction realized at the single molecular level. Furthermore, the mechanistic studies revealed a proton relay-assisted tautomerization showing the importance of external factors such as solvent in such electric field-driven reactions. Finally, single-molecule charge transport and energetics calculations of different molecular species at various applied electric fields using a polarizable continuum solvent model confirm and support our experimental findings. Thus, this study demonstrates that mimicking an enzymatic pocket using a single molecular junction's interfacial electric field as a trigger for chemical reactions can open new avenues to the field of synthetic chemistry.
深入了解反应机理途径以掌握外部刺激诱导的化学转化的控制,是开发高效合成策略和设计功能分子系统的关键。酶作为最强大的生物催化剂,能有效利用其内置电场在活性位点内催化和控制复杂的化学反应。在此,我们通过使用机械控制断裂结(MCBJ)技术在原子级尖锐的金电极内创建类似酶的纳米口袋,展示了酰腙实体中的界面电场诱导的质子转移互变异构反应。除此之外,这里使用的分子系统包含两个耦合的酰腙反应中心,因此展示了在单分子水平实现的协同逐步电场诱导反应。此外,机理研究揭示了质子中继辅助的互变异构,表明了溶剂等外部因素在这种电场驱动反应中的重要性。最后,使用可极化连续介质溶剂模型对不同分子种类在各种施加电场下的单分子电荷传输和能量学计算证实并支持了我们的实验结果。因此,这项研究表明,利用单分子结的界面电场模拟酶口袋作为化学反应的触发因素,可以为合成化学领域开辟新的途径。