Spainhour John Christian Givhan, Lim Juho, Qiu Peng
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
Bioinformatics. 2017 May 1;33(9):1426-1428. doi: 10.1093/bioinformatics/btw830.
Survival analysis has been applied to The Cancer Genome Atlas (TCGA) data. Although drug exposure records are available in TCGA, existing survival analyses typically did not consider drug exposure, partly due to naming inconsistencies in the data. We have spent extensive effort to standardize the drug exposure data, which enabled us to perform survival analysis on drug-stratified subpopulations of cancer patients. Using this strategy, we integrated gene copy number data, drug exposure data and patient survival data to infer gene-drug interactions that impact survival. The collection of all analyzed gene-drug interactions in 32 cancer types are organized and presented in a searchable web-portal called gene-drug Interaction for survival in cancer (GDISC). GDISC allows biologists and clinicians to interactively explore the gene-drug interactions identified in the context of TCGA, and discover interactions associated to their favorite cancer, drug and/or gene of interest. In addition, GDISC provides the standardized drug exposure data, which is a valuable resource for developing new methods for drug-specific analysis.
GDISC is available at https://gdisc.bme.gatech.edu/.
生存分析已应用于癌症基因组图谱(TCGA)数据。尽管TCGA中有药物暴露记录,但现有的生存分析通常未考虑药物暴露,部分原因是数据中的命名不一致。我们花费了大量精力对药物暴露数据进行标准化,这使我们能够对癌症患者的药物分层亚群进行生存分析。使用这种策略,我们整合了基因拷贝数数据、药物暴露数据和患者生存数据,以推断影响生存的基因-药物相互作用。32种癌症类型中所有分析的基因-药物相互作用的集合被整理并呈现在一个名为癌症生存基因-药物相互作用(GDISC)的可搜索网络门户中。GDISC允许生物学家和临床医生交互式地探索在TCGA背景下确定的基因-药物相互作用,并发现与其感兴趣的癌症、药物和/或基因相关的相互作用。此外,GDISC提供标准化的药物暴露数据,这是开发药物特异性分析新方法的宝贵资源。
GDISC可在https://gdisc.bme.gatech.edu/获取。