Suppr超能文献

GDISC:一个用于癌症生存基因-药物相互作用综合分析的网络门户。

GDISC: a web portal for integrative analysis of gene-drug interaction for survival in cancer.

作者信息

Spainhour John Christian Givhan, Lim Juho, Qiu Peng

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.

出版信息

Bioinformatics. 2017 May 1;33(9):1426-1428. doi: 10.1093/bioinformatics/btw830.

Abstract

SUMMARY

Survival analysis has been applied to The Cancer Genome Atlas (TCGA) data. Although drug exposure records are available in TCGA, existing survival analyses typically did not consider drug exposure, partly due to naming inconsistencies in the data. We have spent extensive effort to standardize the drug exposure data, which enabled us to perform survival analysis on drug-stratified subpopulations of cancer patients. Using this strategy, we integrated gene copy number data, drug exposure data and patient survival data to infer gene-drug interactions that impact survival. The collection of all analyzed gene-drug interactions in 32 cancer types are organized and presented in a searchable web-portal called gene-drug Interaction for survival in cancer (GDISC). GDISC allows biologists and clinicians to interactively explore the gene-drug interactions identified in the context of TCGA, and discover interactions associated to their favorite cancer, drug and/or gene of interest. In addition, GDISC provides the standardized drug exposure data, which is a valuable resource for developing new methods for drug-specific analysis.

AVAILABILITY AND IMPLEMENTATION

GDISC is available at https://gdisc.bme.gatech.edu/.

CONTACT

peng.qiu@bme.gatech.edu.

摘要

摘要

生存分析已应用于癌症基因组图谱(TCGA)数据。尽管TCGA中有药物暴露记录,但现有的生存分析通常未考虑药物暴露,部分原因是数据中的命名不一致。我们花费了大量精力对药物暴露数据进行标准化,这使我们能够对癌症患者的药物分层亚群进行生存分析。使用这种策略,我们整合了基因拷贝数数据、药物暴露数据和患者生存数据,以推断影响生存的基因-药物相互作用。32种癌症类型中所有分析的基因-药物相互作用的集合被整理并呈现在一个名为癌症生存基因-药物相互作用(GDISC)的可搜索网络门户中。GDISC允许生物学家和临床医生交互式地探索在TCGA背景下确定的基因-药物相互作用,并发现与其感兴趣的癌症、药物和/或基因相关的相互作用。此外,GDISC提供标准化的药物暴露数据,这是开发药物特异性分析新方法的宝贵资源。

可用性与实现

GDISC可在https://gdisc.bme.gatech.edu/获取。

联系方式

peng.qiu@bme.gatech.edu

相似文献

5
A Practical Guide to The Cancer Genome Atlas (TCGA).《癌症基因组图谱(TCGA)实用指南》
Methods Mol Biol. 2016;1418:111-41. doi: 10.1007/978-1-4939-3578-9_6.
8
A network flow-based method to predict anticancer drug sensitivity.一种基于网络流的预测抗癌药物敏感性的方法。
PLoS One. 2015 May 18;10(5):e0127380. doi: 10.1371/journal.pone.0127380. eCollection 2015.

引用本文的文献

1
Comprehensive analysis the role of cuproptosis related genes in abdominal aortic aneurysm.综合分析铜死亡相关基因在腹主动脉瘤中的作用。
Ann Med Surg (Lond). 2025 Jan 21;87(3):1282-1294. doi: 10.1097/MS9.0000000000002932. eCollection 2025 Mar.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验