Joyet Philippe, Mokhtari Abdelhamid, Riboulet-Bisson Eliette, Blancato Víctor S, Espariz Martin, Magni Christian, Hartke Axel, Deutscher Josef, Sauvageot Nicolas
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
Department of Biology, 8 May 1945 University, Guelma, Algeria.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00038-17. Print 2017 Jul 1.
Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In , maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of therefore prevents the growth of on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A mutant had therefore lost the capacity to grow on panose. The genes and are organized in an operon together with GenBank accession no. (renamed ). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. The utilization of maltodextrins by has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other , such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as .
麦芽糖和麦芽糊精在淀粉或糖原的降解过程中形成。麦芽糊精由α-1,4-连接的低聚麦芽糖混合物组成,但也含有一些α-1,6-连接的葡萄糖残基。α-1,6-连接的葡萄糖残基来源于多糖的分支点。在[具体情况未提及处],麦芽三糖主要通过磷酸烯醇丙酮酸:碳水化合物磷酸转移酶系统进行转运和磷酸化。形成的麦芽三糖-6″-磷酸在细胞内被一种特异性磷酸酶MapP去磷酸化。相比之下,麦芽四糖和更长的低聚麦芽糖直至麦芽七糖通过ATP结合盒转运蛋白MdxEFG-MsmX进行非磷酸化摄取。我们发现菌株JH2-2中产生麦芽糖的麦芽糊精水解酶MmdH(GenBank登录号EFT41964)催化α-1,4-连接的低聚麦芽糖的第一步分解代谢步骤。纯化后的酶将偶数个α-1,4-连接的低聚麦芽糖(如麦芽四糖等)转化为麦芽糖,将奇数个(如麦芽三糖等)转化为麦芽糖和葡萄糖。因此,[此处原文缺失相关信息]的失活会阻止[此处原文缺失相关信息]在从麦芽三糖到麦芽七糖的低聚麦芽糖上生长。令人惊讶的是,MmdH还作为一种产麦芽糖的α-1,6-葡萄糖苷酶发挥作用,因为它将麦芽三糖异构体异潘糖转化为麦芽糖和葡萄糖。此外,[此处原文缺失相关信息]含有一种产生葡萄糖的α-1,6-特异性麦芽糊精水解酶(GenBank登录号EFT41963,重命名为GmdH)。这种酶将另一种麦芽三糖异构体潘糖转化为葡萄糖和麦芽糖。因此,[此处原文缺失相关信息]突变体失去了在潘糖上生长的能力。基因[此处原文缺失相关信息]和[此处原文缺失相关信息]与GenBank登录号[此处原文缺失相关信息](重命名为[此处原文缺失相关信息])一起组成一个操纵子。纯化后的MmgT将葡萄糖残基从一个α-1,4-连接的低聚麦芽糖分子转移到另一个分子上。例如,它通过将一个葡萄糖残基转移到另一个麦芽三糖分子上催化麦芽三糖的歧化反应,从而一起形成麦芽四糖和麦芽糖以及少量麦芽五糖。[此处原文缺失相关信息]对麦芽糊精的利用已被证明会增加这种医院病原体的毒力。然而,关于这种生物体如何分解代谢麦芽糊精知之甚少。我们鉴定出了两种参与各种α-1,4-和α-1,6-连接的低聚麦芽糖代谢的酶。我们发现其中一种作为具有宽松连接特异性(α-1,4和α-1,6)以及外切和内切葡萄糖苷酶活性的产麦芽糖α-葡萄糖苷酶发挥作用。第三种酶类似于淀粉麦芽糖酶,专门将葡萄糖残基从一个低聚麦芽糖分子转移到另一个分子上。许多其他[此处原文缺失相关信息]中也存在类似的酶,如链球菌和乳酸杆菌,这表明这些生物体遵循与[此处原文缺失相关信息]相同的麦芽糖降解途径。