Suppr超能文献

A组链球菌的麦芽糖酶参与麦芽三糖和更长链麦芽糊精的快速转运。

MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins.

作者信息

Shelburne Samuel A, Fang Han, Okorafor Nnaja, Sumby Paul, Sitkiewicz Izabela, Keith David, Patel Payal, Austin Celest, Graviss Edward A, Musser James M, Chow Dar-Chone

机构信息

Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, B490, 6565 Fannin Street, Houston, TX 77030, USA.

出版信息

J Bacteriol. 2007 Apr;189(7):2610-7. doi: 10.1128/JB.01539-06. Epub 2007 Jan 26.

Abstract

Study of the maltose/maltodextrin binding protein MalE in Escherichia coli has resulted in fundamental insights into the molecular mechanisms of microbial transport. Whether gram-positive bacteria employ a similar pathway for maltodextrin transport is unclear. The maltodextrin binding protein MalE has previously been shown to be key to the ability of group A Streptococcus (GAS) to colonize the oropharynx, the major site of GAS infection in humans. Here we used a multifaceted approach to elucidate the function and binding characteristics of GAS MalE. We found that GAS MalE is a central part of a highly efficient maltodextrin transport system capable of transporting linear maltodextrins that are up to at least seven glucose molecules long. Of the carbohydrates tested, GAS MalE had the highest affinity for maltotriose, a major breakdown product of starch in the human oropharynx. The thermodynamics and fluorescence changes induced by GAS MalE-maltodextrin binding were essentially opposite those reported for E. coli MalE. Moreover, unlike E. coli MalE, GAS MalE exhibited no specific binding of maltose or cyclic maltodextrins. Our data show that GAS developed a transport system optimized for linear maltodextrins longer than two glucose molecules that has several key differences from its well-studied E. coli counterpart.

摘要

对大肠杆菌中麦芽糖/麦芽糊精结合蛋白MalE的研究,使人们对微生物运输的分子机制有了基本的认识。革兰氏阳性菌是否采用类似的途径进行麦芽糊精运输尚不清楚。此前已证明,麦芽糊精结合蛋白MalE是A组链球菌(GAS)在人类口咽部(GAS感染的主要部位)定殖能力的关键。在这里,我们采用多方面的方法来阐明GAS MalE的功能和结合特性。我们发现,GAS MalE是一个高效麦芽糊精运输系统的核心部分,该系统能够运输长度至少为七个葡萄糖分子的线性麦芽糊精。在测试的碳水化合物中,GAS MalE对麦芽三糖(人类口咽部淀粉的主要分解产物)具有最高的亲和力。GAS MalE与麦芽糊精结合所诱导的热力学和荧光变化与报道的大肠杆菌MalE基本相反。此外,与大肠杆菌MalE不同,GAS MalE对麦芽糖或环状麦芽糊精没有特异性结合。我们的数据表明,GAS开发了一种针对长度超过两个葡萄糖分子的线性麦芽糊精优化的运输系统,该系统与其经过充分研究的大肠杆菌对应物有几个关键差异。

相似文献

1
MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins.
J Bacteriol. 2007 Apr;189(7):2610-7. doi: 10.1128/JB.01539-06. Epub 2007 Jan 26.
4
The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins.
J Supramol Struct. 1980;13(1):101-16. doi: 10.1002/jss.400130110.
5
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00038-17. Print 2017 Jul 1.
8
Molecular characterization of group A Streptococcus maltodextrin catabolism and its role in pharyngitis.
Mol Microbiol. 2008 Jul;69(2):436-52. doi: 10.1111/j.1365-2958.2008.06290.x.
10
The maltodextrin system of Escherichia coli: metabolism and transport.
J Bacteriol. 2005 Dec;187(24):8322-31. doi: 10.1128/JB.187.24.8322-8331.2005.

引用本文的文献

3
Fluorinated carbohydrates for F-positron emission tomography (PET).
Chem Soc Rev. 2023 Jun 6;52(11):3599-3626. doi: 10.1039/d3cs00037k.
4
Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development.
ISME J. 2022 Jul;16(7):1730-1739. doi: 10.1038/s41396-022-01221-y. Epub 2022 Mar 25.
5
The exploitation of human glycans by Group A Streptococcus.
FEMS Microbiol Rev. 2022 May 6;46(3). doi: 10.1093/femsre/fuac001.
6
Multicomponent Vaccines against Group A Streptococcus Can Effectively Target Broad Disease Presentations.
Vaccines (Basel). 2021 Sep 15;9(9):1025. doi: 10.3390/vaccines9091025.
8
The Operon Encodes a Predicted ABC Importer Required for Fitness and Virulence during Group A Invasive Infection.
Infect Immun. 2019 Nov 18;87(12). doi: 10.1128/IAI.00613-19. Print 2019 Dec.
9
A novel synthesis of 6''-[ F]-fluoromaltotriose as a PET tracer for imaging bacterial infection.
J Labelled Comp Radiopharm. 2018 May 15;61(5):408-414. doi: 10.1002/jlcr.3601. Epub 2018 Mar 30.

本文引用的文献

1
Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection.
Am J Pathol. 2006 Sep;169(3):927-42. doi: 10.2353/ajpath.2006.060112.
3
Maltose and maltodextrin utilization by Bacillus subtilis.
J Bacteriol. 2006 Jun;188(11):3911-22. doi: 10.1128/JB.00213-06.
4
Toward a genome-wide systems biology analysis of host-pathogen interactions in group A Streptococcus.
Am J Pathol. 2005 Dec;167(6):1461-72. doi: 10.1016/S0002-9440(10)61232-1.
5
Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16037-42. doi: 10.1073/pnas.0505839102. Epub 2005 Oct 25.
8
Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9014-9. doi: 10.1073/pnas.0503671102. Epub 2005 Jun 14.
9
Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus.
Infect Immun. 2005 May;73(5):3137-46. doi: 10.1128/IAI.73.5.3137-3146.2005.
10
Maltose utilization in Enterococcus faecalis.
J Appl Microbiol. 2005;98(4):806-13. doi: 10.1111/j.1365-2672.2004.02468.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验